1
|
Baek I, Bello AB, Jeon J, Arai Y, Cha BH, Kim BJ, Lee SH. Therapeutic potential of epiphyseal growth plate cells for bone regeneration in an osteoporosis model. J Tissue Eng 2022; 13:20417314221116754. [PMID: 35983547 PMCID: PMC9379561 DOI: 10.1177/20417314221116754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Bone growth occurs in the epiphyseal growth plate (EGP) and epiphyseal growth plate cells (EGPCs) exist in EGP. EGPCs, including skeletal stem cells (SSCs), are cells that induce bone growth and development through endochondral ossification. Recently, the superiority of bone regeneration through endochondral ossification has been reported. Our study compared EGPCs with bone marrow-derived mesenchymal stem cells (BM-MSCs) and suggested the therapeutic potential of new bone regeneration. In this study, we analyzed the characteristics between EGPCs and BM-MSCs based on morphological characteristics and molecular profiles. EGPCs expressed chondrogenic and osteogenic markers higher than BM-MSCs. Additionally, in co-culture with BM-MSCs, EGPCs induced an increase in chondrogenic, osteogenic, and hypertrophic markers of BM-MSCs. Finally, EGPCs induced higher bone regeneration than BM-MSCs in the osteoporosis model. Overall, we suggest the possibility of EGPCs as cell therapy for effective bone regeneration.
Collapse
Affiliation(s)
- Inho Baek
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| | - Alvin Bacero Bello
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| | - Jieun Jeon
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| | - Yoshie Arai
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| | - Byung-Hyun Cha
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | | | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| |
Collapse
|
2
|
Park H, Kim IG, Wu Y, Cho H, Shin J, Park SA, Chung E. Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and
3D
printing polycaprolactone scaffolds using a rat model. Head Neck 2020; 43:833-848. [DOI: 10.1002/hed.26540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/01/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Hanaro Park
- Department of Otorhinolaryngology‐Head & Neck Surgery Samsung Changwon Hospital, Sungkyunkwan University School of Medicine Changwon South Korea
| | - In Gul Kim
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| | - Yanru Wu
- Department of Biomedical Engineering Inje University Gimhae, Gyeongnam South Korea
| | - Hana Cho
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| | - Jung‐Woog Shin
- Department of Biomedical Engineering Inje University Gimhae, Gyeongnam South Korea
| | - Su A Park
- Department of Nature‐Inspired Nanoconvergence Systems Korea Institute of Machinery and Materials Daejeon Republic of Korea
| | - Eun‐Jae Chung
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| |
Collapse
|
3
|
Abdelrahman SA, Samak MA, Shalaby SM. Fluoxetine pretreatment enhances neurogenic, angiogenic and immunomodulatory effects of MSCs on experimentally induced diabetic neuropathy. Cell Tissue Res 2018; 374:83-97. [PMID: 29687216 DOI: 10.1007/s00441-018-2838-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
Being one of the most debilitating complications among diabetic patients, diabetic polyneuropathy (DPN) is a paramount point of continuous research. Stem cell therapies have shown promising results. However, limited cell survival and paracrine activities hinder its transfer from bench to bedside. We designed this study to evaluate fluoxetine-pretreatment technique of mesenchymal stem cells (MSCs) as an approach to enhance their paracrine and immunomodulatory properties in DPN. Effects of fluoxetine treatment of MSCs were tested in vitro. Forty-two adult Wistar male albino rats were utilized, further subdivided into control, diabetic, MSC-treated and fluoxetine-pretreated MSC groups. Sciatic nerve sections were prepared for light and electron microscope examination and immunohistochemical detection of neurofilament (NF) protein. Also, we assessed in vitro survival and paracrine properties of fluoxetine-pretreated MSCs. Real time PCR of BDNF, VEGF, IL-1β, and IL-10 expression in tissue homogenate was performed. Our results showed restoration of normal neuronal histomorphology and ultrastructure, moreover, immunohistochemical expression of anti-neurofilament protein was significantly elevated in MSC-treated groups compared to the diabetic one. Fluoxetine enhanced the MSC survival and their paracrine properties of MSCs in vitro. Furthermore, the fluoxetine-pretreated MSC group revealed a significant elevation of mRNA expression of BDNF (neurotrophic factor) and VEGF (angiogenic factor), denoting ameliorated MSC paracrine properties. Similarly, improved immunomodulatory functions were evident by a significant reduction of interleukin-1β mRNA expression (pro-inflammatory) and a reciprocal significant increase of interleukin-10 (anti-inflammatory). We concluded that fluoxetine-pretreatment of MSCs boosts their survival, paracrine, and immunomodulatory traits and directly influenced neuronal histomorphology. Hence, it presents a promising intervention of diabetic polyneuropathy. Graphical Abstract.
Collapse
Affiliation(s)
- Shaimaa A Abdelrahman
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Asharquia, Zagazig, 44519, Egypt
| | - Mai A Samak
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Asharquia, Zagazig, 44519, Egypt.
| | - Sally M Shalaby
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Yi T, Huang S, Liu G, Li T, Kang Y, Luo Y, Wu J. Bioreactor Synergy with 3D Scaffolds: New Era for Stem Cells Culture. ACS APPLIED BIO MATERIALS 2018; 1:193-209. [DOI: 10.1021/acsabm.8b00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tianqi Yi
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Shaoxiong Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Tiancheng Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuxi Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory of Polymer Composites and Functional Materials of Ministry of Education, , Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Kim M, Kim KH, Song SU, Yi TG, Yoon SH, Park SR, Choi BH. Transplantation of human bone marrow-derived clonal mesenchymal stem cells reduces fibrotic scar formation in a rat spinal cord injury model. J Tissue Eng Regen Med 2017; 12:e1034-e1045. [PMID: 28112873 DOI: 10.1002/term.2425] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/22/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022]
Abstract
This study aimed to evaluate the therapeutic effect on tissue repair and scar formation of human bone marrow-derived clonal mesenchymal stem cells (hcMSCs) homogeneously isolated by using a subfractionation culturing method, in comparison with the non-clonal MSCs (hMSCs), in a rat spinal cord injury (SCI) model. The SCI was made using a vascular clip at the T9 level. Cells were transplanted into the lesion site 3 days after injury. A functional test was performed over 4 weeks employing a BBB score. Rats were killed for histological analysis at 3 days, 1 week and 4 weeks after injury. The transplantation of hMSCs and hcMSCs significantly reduced lesion size and the fluid-filled cavity at 4 weeks in comparison with the control group injected with phosphate buffered saline (PBS) (p < 0.01). Transplantation of hcMSCs showed more axons reserved than that of hMSCs in the lesion epicentre filled with non-neuronal tissues. In addition, hMSCs and hcMSCs clearly reduced the inflammatory reaction and intraparenchymal hemorrhaging, compared with the PBS group. Interestingly, hcMSCs largely decreased Col IV expression, one of the markers of fibrotic scars. hcMSCs yielded therapeutic effects more than equal to those of hMSCs on the SCI. Both hMSCs and hcMSCs created an increase in axon regeneration and reduced scar formation around the SCI lesion. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Moonhang Kim
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Republic of Korea
| | - Kil Hwan Kim
- Veterans Medical Research Institute, VHS Medical Center, Seoul, Republic of Korea
| | - Sun U Song
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea.,SCM Lifescience Co., Ltd., Incheon, Republic of Korea
| | - Tac Ghee Yi
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea.,SCM Lifescience Co., Ltd., Incheon, Republic of Korea
| | - Seung Hwan Yoon
- Department of Neurosurgery, Inha University College of Medicine, Incheon, Republic of Korea
| | - So Ra Park
- Department of Physiology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
6
|
Combined Wharton’s jelly derived mesenchymal stem cells and nerve guidance conduit: A potential promising therapy for peripheral nerve injuries. Int J Biochem Cell Biol 2017; 86:67-76. [DOI: 10.1016/j.biocel.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/14/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
|
7
|
Park SY, Choi JW, Park JK, Song EH, Park SA, Kim YS, Shin YS, Kim CH. Tissue-engineered artificial oesophagus patch using three-dimensionally printed polycaprolactone with mesenchymal stem cells: a preliminary report. Interact Cardiovasc Thorac Surg 2016; 22:712-7. [PMID: 26969739 DOI: 10.1093/icvts/ivw048] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/26/2016] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES There has been a recent focus on 3D printing with regard to tissue engineering. We evaluated the efficacy of a 3D-printed (3DP) scaffold coated with mesenchymal stem cells (MSCs) seeded in fibrin for the repair of partial oesophageal defects. METHODS MSCs from rabbit bone marrow were cultured, and a 3DP polycaprolactone (PCL) scaffold was coated with the MSCs seeded in fibrin. The fibrin/MSC-coated 3DP PCL scaffold was implanted on a 5 × 10 mm artificial oesophageal defect in three rabbits (3DP/MSC group) and 3DP PCL-only scaffolds were implanted in three rabbits (3DP-only group). Three weeks post-procedure, the implanted sites were evaluated radiologically and histologically. RESULTS None of the rabbits showed any infection, stenosis or granulation on computed tomography. In the 3DP/MSC group, the replaced scaffolds were completely covered with regenerating mucosal epithelium and smooth muscle cells as determined by haematoxylin and eosin and Desmin staining. However, mucosal epithelium and smooth muscle cell regeneration was not evident in the 3DP-only group. CONCLUSIONS Use of the 3DP scaffold coated with MSCs seeded in fibrin resulted in successful restoration of the shape and histology of the cervical oesophagus without any graft rejection; thus, this is a promising material for use as an artificial oesophagus.
Collapse
Affiliation(s)
- Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Ajou University, Suwon, Republic of Korea
| | - Jae Won Choi
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Ju-Kyeong Park
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea Department of Molecular Science & Technology, Ajou University, Suwon, Republic of Korea
| | - Eun Hye Song
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Su A Park
- Nature-Inspired Mechanical System Team, Nano Convergence & Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Yeon Soo Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea Department of Molecular Science & Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
8
|
Proteomic analysis of ischemic rat brain after human mesenchymal stem cell transplantation. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0048-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
9
|
Chang JW, Park SA, Park JK, Choi JW, Kim YS, Shin YS, Kim CH. Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report. Artif Organs 2014; 38:E95-E105. [PMID: 24750044 DOI: 10.1111/aor.12310] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three-dimensional printing has come into the spotlight in the realm of tissue engineering. We intended to evaluate the plausibility of 3D-printed (3DP) scaffold coated with mesenchymal stem cells (MSCs) seeded in fibrin for the repair of partial tracheal defects. MSCs from rabbit bone marrow were expanded and cultured. A half-pipe-shaped 3DP polycaprolactone scaffold was coated with the MSCs seeded in fibrin. The half-pipe tracheal graft was implanted on a 10 × 10-mm artificial tracheal defect in four rabbits. Four and eight weeks after the operation, the reconstructed sites were evaluated bronchoscopically, radiologically, histologically, and functionally. None of the four rabbits showed any sign of respiratory distress. Endoscopic examination and computed tomography showed successful reconstruction of trachea without any collapse or blockage. The replaced tracheas were completely covered with regenerated respiratory mucosa. Histologic analysis showed that the implanted 3DP tracheal grafts were successfully integrated with the adjacent trachea without disruption or granulation tissue formation. Neo-cartilage formation inside the implanted graft was sufficient to maintain the patency of the reconstructed trachea. Scanning electron microscope examination confirmed the regeneration of the cilia, and beating frequency of regenerated cilia was not different from those of the normal adjacent mucosa. The shape and function of reconstructed trachea using 3DP scaffold coated with MSCs seeded in fibrin were restored successfully without any graft rejection.
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|