1
|
Liu K, Wang H, Wang L, Ma W, Yang J, Li C, Liu J, Bao W, Li L, Du Y, Gao H. Benzeneboronic acid-modified hyaluronic acid hydrogel enhances the differentiation of dorsal root ganglion stem cells in a three-dimensional environment. Int J Biol Macromol 2025; 309:142786. [PMID: 40185459 DOI: 10.1016/j.ijbiomac.2025.142786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Peripheral nerve injuries (PNI) remain challenging to treat due to limited regeneration capacity and the lack of effective therapeutic scaffolds to support nerve repair. This study aims to develop and evaluate a 3-aminophenylboronic acid-modified hyaluronic acid (HAB) hydrogel as a 3D scaffold to enhance Dorsal root ganglion-derived stem cells (DRGSCs) attachment, migration, and neuronal differentiation for peripheral nerve regeneration. The HAB hydrogel was synthesized through an amidation reaction and characterized using Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR). DRGSCs were cultured in HAB hydrogel, and neuronal differentiation was assessed through immunofluorescence staining, PCR, and multi-electrode array (MEA) recordings. Cytotoxicity, proliferation, and in vivo biocompatibility were evaluated through live/dead staining, CCK-8 assays, and subcutaneous implantation in rats. Transcriptomic analysis was performed to explore gene expression profiles. Our results shown that DRGSCs cultured in HAB hydrogel exhibited significantly improved attachment (78.5 % ± 3.2 % vs. 45.3 % ± 2.8 %, p < 0.05) and migration speeds (21.4 μm/h vs. 12.9 μm/h, p < 0.05) compared to 2D cultures. Neuronal differentiation efficiency, as indicated by Tuj1-positive cells, was also higher (72.6 % ± 4.1 % vs. 42.8 % ± 3.9 %, p < 0.01). RNA sequencing identified 990 differentially expressed genes (627 upregulated, 363 downregulated), with pathways involved in synaptic vesicle cycling, glutamatergic and GABAergic synapses significantly enriched (p < 0.05). Validation revealed that the expression trends of Gnao1 and Grm7 in the plastic petri dish and HAB hydrogel groups were consistent with the RNA sequencing results. In vivo, the hydrogel showed excellent biocompatibility, with reduced TNF-α and IL-1β expression over a 28-day degradation cycle (p < 0.01). The HAB hydrogel provides a supportive 3D microenvironment that enhances DRGSCs differentiation and electrophysiological activity, highlighting its potential as a promising scaffold for peripheral nerve regeneration and neuroregenerative medicine.
Collapse
Affiliation(s)
- Kuangpin Liu
- College of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Hailei Wang
- Hepatic Surgery, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650500, China
| | - Le Wang
- Department of Clinical Laboratory, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, China
| | - Jinwei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Chunyan Li
- Neurology Department, The Second Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jinhua Liu
- College of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Wenli Bao
- College of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, China.
| | - Yan Du
- College of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650032, China.
| | - Hongqiang Gao
- Hepatic Surgery, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
2
|
Mazzoldi EL, Gaudenzi G, Ginestra PS, Ceretti E, Giliani SC. Evaluating cells metabolic activity of bioinks for bioprinting: the role of cell-laden hydrogels and 3D printing on cell survival. Front Bioeng Biotechnol 2024; 12:1450838. [PMID: 39391599 PMCID: PMC11464773 DOI: 10.3389/fbioe.2024.1450838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Tissue engineering has advanced significantly in recent years, owing primarily to additive manufacturing technology and the combination of biomaterials and cells known as 3D cell printing or Bioprinting. Nonetheless, various obstacles remain developing adequate 3D printed structures for biomedical applications, including bioinks optimization to meet biocompatibility and printability standards. Hydrogels are among the most intriguing bioinks because they mimic the natural extracellular matrix found in connective tissues and can create a highly hydrated environment that promotes cell attachment and proliferation; however, their mechanical properties are weak and difficult to control, making it difficult to print a proper 3D structure. Methods In this research, hydrogels based on Alginate and Gelatin are tested to evaluate the metabolic activity, going beyond the qualitative evaluation of cell viability. The easy-to-make hydrogel has been chosen due to the osmotic requirements of the cells for their metabolism, and the possibility to combine temperature and chemical crosslinking. Different compositions (%w/v) are tested (8% gel-7% alg, 4% gel-4% alg, 4% gel-2% alg), in order to obtain a 3D structure up to 10.3 ± 1.4 mm. Results The goal of this paper is to validate the obtained cell-laden 3D structures in terms of cell metabolic activity up to 7 days, further highlighting the difference between printed and not printed cell-laden hydrogels. To this end, MS5 cells viability is determined by implementing the live/dead staining with the analysis of the cellular metabolic activity through ATP assay, enhancing the evaluation of the actual cells activity over cells number. Discussion The results of the two tests are not always comparable, indicating that they are not interchangeable but provide complementary pieces of information.
Collapse
Affiliation(s)
- Elena Laura Mazzoldi
- Angelo Nocivelli Institute of Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giulia Gaudenzi
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Paola Serena Ginestra
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Elisabetta Ceretti
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Silvia Clara Giliani
- Angelo Nocivelli Institute of Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Nashchekina Y, Militsina A, Elokhovskiy V, Ivan’kova E, Nashchekin A, Kamalov A, Yudin V. Precisely Printable Silk Fibroin/Carboxymethyl Cellulose/Alginate Bioink for 3D Printing. Polymers (Basel) 2024; 16:1027. [PMID: 38674947 PMCID: PMC11054624 DOI: 10.3390/polym16081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional (3D) bioprinting opens up many possibilities for tissue engineering, thanks to its ability to create a three-dimensional environment for cells like an extracellular matrix. However, the use of natural polymers such as silk fibroin in 3D bioprinting faces obstacles such as having a limited printability due to the low viscosity of such solutions. This study addresses these gaps by developing highly viscous, stable, and biocompatible silk fibroin-based inks. The addition of 2% carboxymethyl cellulose sodium and 1% sodium alginate to an aqueous solution containing 2.5 to 5% silk fibroin significantly improves the printability, stability, and mechanical properties of the printed scaffolds. It has been demonstrated that the more silk fibroin there is in bioinks, the higher their printability. To stabilize silk fibroin scaffolds in an aqueous environment, the printed structures must be treated with methanol or ethanol, ensuring the transition from the silk fibroin's amorphous phase to beta sheets. The developed bioinks that are based on silk fibroin, alginate, and carboxymethyl cellulose demonstrate an ease of printing and a high printing quality, and have a sufficiently good biocompatibility with respect to mesenchymal stromal cells. The printed scaffolds have satisfactory mechanical characteristics. The resulting 3D-printing bioink composition can be used to create tissue-like structures.
Collapse
Affiliation(s)
- Yuliya Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Center of Cell Technologies, St. Petersburg 194064, Russia
| | - Anastasia Militsina
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia;
| | - Vladimir Elokhovskiy
- Institute of Macromolecular Compounds of Russian Academy of Sciences, St. Petersburg 199004, Russia; (V.E.); (E.I.); (A.K.)
| | - Elena Ivan’kova
- Institute of Macromolecular Compounds of Russian Academy of Sciences, St. Petersburg 199004, Russia; (V.E.); (E.I.); (A.K.)
- S.M. Kirov Military Medical Academy, Scientific Research Center, St. Petersburg 194044, Russia
| | - Alexey Nashchekin
- Ioffe Institute, Laboratory «Characterization of Materials and Structures of Solid State Electronics», St. Petersburg 194021, Russia;
| | - Almaz Kamalov
- Institute of Macromolecular Compounds of Russian Academy of Sciences, St. Petersburg 199004, Russia; (V.E.); (E.I.); (A.K.)
| | - Vladimir Yudin
- Institute of Macromolecular Compounds of Russian Academy of Sciences, St. Petersburg 199004, Russia; (V.E.); (E.I.); (A.K.)
| |
Collapse
|
4
|
Seok JM, Ahn M, Kim D, Lee JS, Lee D, Choi MJ, Yeo SJ, Lee JH, Lee K, Kim BS, Park SA. Decellularized matrix bioink with gelatin methacrylate for simultaneous improvements in printability and biofunctionality. Int J Biol Macromol 2024; 262:130194. [PMID: 38360222 DOI: 10.1016/j.ijbiomac.2024.130194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Gelatin methacrylate (GelMA) bioink has been widely used in bioprinting because it is a printable and biocompatible biomaterial. However, it is difficult to print GelMA bioink without any temperature control because it has a thermally-sensitive rheological property. Therefore, in this study, we developed a temperature-controlled printing system in real time without affecting the viability of the cells encapsulated in the bioink. In addition, a skin-derived decellularized extracellular matrix (SdECM) was printed with GelMA to better mimic the native tissue environment compared with solely using GelMA bioink with the enhancement of structural stability. The temperature setting accuracy was calculated to be 98.58 ± 1.8 % for the module and 99.48 ± 1.33 % for the plate from 5 °C to 37 °C. The group of the temperature of the module at 10 °C and the plate at 20 °C have 93.84 % cell viability with the printable range in the printability window. In particular, the cell viability and proliferation were increased in the encapsulated fibroblasts in the GelMA/SdECM bioink, relative to the GelMA bioink, with a morphology that significantly spread for seven days. The gene expression and growth factors related to skin tissue regeneration were relatively upregulated with SdECM components. In the bioprinting process, the rheological properties of the GelMA/SdECM bioink were successfully adjusted in real time to increase printability, and the native skin tissue mimicked components providing tissue-specific biofunctions to the encapsulated cells. The developed bioprinting strategies and bioinks could support future studies related to the skin tissue reconstruction, regeneration, and other medical applications using the bioprinting process.
Collapse
Affiliation(s)
- Ji Min Seok
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjun Ahn
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dahong Kim
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjin Lee
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Min-Ju Choi
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seon Ju Yeo
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Jun Hee Lee
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea; School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Su A Park
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea.
| |
Collapse
|
5
|
Avnet S, Pompo GD, Borciani G, Fischetti T, Graziani G, Baldini N. Advantages and limitations of using cell viability assays for 3D bioprinted constructs. Biomed Mater 2024; 19:025033. [PMID: 38306683 DOI: 10.1088/1748-605x/ad2556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Bioprinting shows promise for bioengineered scaffolds and three-dimensional (3D) disease models, but assessing the viability of embedded cells is challenging. Conventional assays are limited by the technical problems that derive from using multi-layered bioink matrices dispersing cells in three dimensions. In this study, we tested bioprinted osteogenic bioinks as a model system. Alginate- or gelatin-based bioinks were loaded with/without ceramic microparticles and osteogenic cells (bone tumor cells, with or without normal bone cells). Despite demonstrating 80%-90% viability through manual counting and live/dead staining, this was time-consuming and operator-dependent. Moreover, for the alginate-bioprinted scaffold, cell spheroids could not be distinguished from single cells. The indirect assay (alamarBlue), was faster but less accurate than live/dead staining due to dependence on hydrogel permeability. Automated confocal microscope acquisition and cell counting of live/dead staining was more reproducible, reliable, faster, efficient, and avoided overestimates compared to manual cell counting by optical microscopy. Finally, for 1.2 mm thick 3D bioprints, dual-photon confocal scanning with vital staining greatly improved the precision of the evaluation of cell distribution and viability and cell-cell interactions through thez-axis. In summary, automated confocal microscopy and cell counting provided superior accuracy for the assessment of cell viability and interactions in 3D bioprinted models compared to most commonly and currently used techniques.
Collapse
Affiliation(s)
- Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Gemma Di Pompo
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giorgia Borciani
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Tiziana Fischetti
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gabriela Graziani
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
6
|
Sabzevari A, Rayat Pisheh H, Ansari M, Salati A. Progress in bioprinting technology for tissue regeneration. J Artif Organs 2023; 26:255-274. [PMID: 37119315 DOI: 10.1007/s10047-023-01394-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/09/2023] [Indexed: 05/01/2023]
Abstract
In recent years, due to the increase in diseases that require organ/tissue transplantation and the limited donor, on the other hand, patients have lost hope of recovery and organ transplantation. Regenerative medicine is one of the new sciences that promises a bright future for these patients by providing solutions to repair, improve function, and replace tissue. One of the technologies used in regenerative medicine is three-dimensional (3D) bioprinters. Bioprinting is a new strategy that is the basis for starting a global revolution in the field of medical sciences and has attracted much attention. 3D bioprinters use a combination of advanced biology and cell science, computer science, and materials science to create complex bio-hybrid structures for various applications. The capacity to use this technology can be demonstrated in regenerative medicine to make various connective tissues, such as skin, cartilage, and bone. One of the essential parts of a 3D bioprinter is the bio-ink. Bio-ink is a combination of biologically active molecules, cells, and biomaterials that make the printed product. In this review, we examine the main bioprinting strategies, such as inkjet printing, laser, and extrusion-based bioprinting, as well as some of their applications.
Collapse
Affiliation(s)
- Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Amir Salati
- Tissue Engineering and Applied Cell Sciences Group, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
7
|
Gnatowski P, Piłat E, Kucińska-Lipka J, Saeb MR, Hamblin MR, Mozafari M. Recent advances in 3D bioprinted tumor models for personalized medicine. Transl Oncol 2023; 37:101750. [PMID: 37572498 PMCID: PMC10440569 DOI: 10.1016/j.tranon.2023.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
Cancerous tumors are among the most fatal diseases worldwide, claiming nearly 10 million lives in 2020. Due to their complex and dynamic nature, modeling tumors accurately is a challenging task. Current models suffer from inadequate translation between in vitro and in vivo results, primarily due to the isotropic nature of tumors and their microenvironment's relationship. To address these limitations, hydrogel-based 3D bioprinting is emerging as a promising approach to mimic cancer development and behavior. It provides precise control over individual elements' size and distribution within the cancer microenvironment and enables the use of patient-derived tumor cells, rather than commercial lines. Consequently, hydrogel bioprinting is expected to become a state-of-the-art technique for cancer research. This manuscript presents an overview of cancer statistics, current modeling methods, and their limitations. Additionally, we highlight the significance of bioprinting, its applications in cancer modeling, and the importance of hydrogel selection. We further explore the current state of creating models for the five deadliest cancers using 3D bioprinting. Finally, we discuss current trends and future perspectives on the clinical use of cancer modeling using hydrogel bioprinting.
Collapse
Affiliation(s)
- Przemysław Gnatowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Edyta Piłat
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
8
|
Han X, Saiding Q, Cai X, Xiao Y, Wang P, Cai Z, Gong X, Gong W, Zhang X, Cui W. Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds. NANO-MICRO LETTERS 2023; 15:239. [PMID: 37907770 PMCID: PMC10618155 DOI: 10.1007/s40820-023-01187-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023]
Abstract
Blood vessels are essential for nutrient and oxygen delivery and waste removal. Scaffold-repairing materials with functional vascular networks are widely used in bone tissue engineering. Additive manufacturing is a manufacturing technology that creates three-dimensional solids by stacking substances layer by layer, mainly including but not limited to 3D printing, but also 4D printing, 5D printing and 6D printing. It can be effectively combined with vascularization to meet the needs of vascularized tissue scaffolds by precisely tuning the mechanical structure and biological properties of smart vascular scaffolds. Herein, the development of neovascularization to vascularization to bone tissue engineering is systematically discussed in terms of the importance of vascularization to the tissue. Additionally, the research progress and future prospects of vascularized 3D printed scaffold materials are highlighted and presented in four categories: functional vascularized 3D printed scaffolds, cell-based vascularized 3D printed scaffolds, vascularized 3D printed scaffolds loaded with specific carriers and bionic vascularized 3D printed scaffolds. Finally, a brief review of vascularized additive manufacturing-tissue scaffolds in related tissues such as the vascular tissue engineering, cardiovascular system, skeletal muscle, soft tissue and a discussion of the challenges and development efforts leading to significant advances in intelligent vascularized tissue regeneration is presented.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, People's Republic of China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Xiaolu Cai
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Yi Xiao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Peng Wang
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, People's Republic of China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Xuan Gong
- University of Texas Southwestern Medical Center, Dallas, TX, 75390-9096, USA
| | - Weiming Gong
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, People's Republic of China.
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
9
|
Bashiri Z, Rajabi Fomeshi M, Ghasemi Hamidabadi H, Jafari D, Alizadeh S, Nazm Bojnordi M, Orive G, Dolatshahi-Pirouz A, Zahiri M, Reis RL, Kundu SC, Gholipourmalekabadi M. 3D-printed placental-derived bioinks for skin tissue regeneration with improved angiogenesis and wound healing properties. Mater Today Bio 2023; 20:100666. [PMID: 37273796 PMCID: PMC10239019 DOI: 10.1016/j.mtbio.2023.100666] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
Extracellular matrix (ECM)-based bioinks has attracted much attention in recent years for 3D printing of native-like tissue constructs. Due to organ unavailability, human placental ECM can be an alternative source for the construction of 3D print composite scaffolds for the treatment of deep wounds. In this study, we use different concentrations (1.5%, 3% and 5%w/v) of ECM derived from the placenta, sodium-alginate and gelatin to prepare a printable bioink biomimicking natural skin. The printed hydrogels' morphology, physical structure, mechanical behavior, biocompatibility, and angiogenic property are investigated. The optimized ECM (5%w/v) 3D printed scaffold is applied on full-thickness wounds created in a mouse model. Due to their unique native-like structure, the ECM-based scaffolds provide a non-cytotoxic microenvironment for cell adhesion, infiltration, angiogenesis, and proliferation. In contrast, they do not show any sign of immune response to the host. Notably, the biodegradation, swelling rate, mechanical property, cell adhesion and angiogenesis properties increase with the increase of ECM concentrations in the construct. The ECM 3D printed scaffold implanted into deep wounds increases granulation tissue formation, angiogenesis, and re-epithelialization due to the presence of ECM components in the construct, when compared with printed scaffold with no ECM and no treatment wound. Overall, our findings demonstrate that the 5% ECM 3D scaffold supports the best deep wound regeneration in vivo, produces a skin replacement with a cellular structure comparable to native skin.
Collapse
Affiliation(s)
- Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Motahareh Rajabi Fomeshi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Alizadeh
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Nazm Bojnordi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029, Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007, Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore, 169856, Singapore
| | | | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Guimaraes, Portugal
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Zein-based 3D tubular constructs with tunable porosity for 3D cell culture and drug delivery. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Arif ZU, Khalid MY, Noroozi R, Hossain M, Shi HH, Tariq A, Ramakrishna S, Umer R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J Pharm Sci 2023; 18:100812. [PMID: 37274921 PMCID: PMC10238852 DOI: 10.1016/j.ajps.2023.100812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Biopolymers are promising environmentally benign materials applicable in multifarious applications. They are especially favorable in implantable biomedical devices thanks to their excellent unique properties, including bioactivity, renewability, bioresorbability, biocompatibility, biodegradability and hydrophilicity. Additive manufacturing (AM) is a flexible and intricate manufacturing technology, which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems. Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical settings including wound dressing, drug delivery systems, medical implants and tissue engineering. The present review highlights recent advancements in different types of biopolymers, such as proteins and polysaccharides, which are employed to develop different biomedical products by using extrusion, vat polymerization, laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting techniques. This review also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds. This work also addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AM techniques. Ideally, there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.
Collapse
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering (ZCCE), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - HaoTian Harvey Shi
- Department of Mechanical & Materials Engineering, Western University, Ontario N6A 3K7, Canada
| | - Ali Tariq
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
12
|
Tripathi S, Mandal SS, Bauri S, Maiti P. 3D bioprinting and its innovative approach for biomedical applications. MedComm (Beijing) 2023; 4:e194. [PMID: 36582305 PMCID: PMC9790048 DOI: 10.1002/mco2.194] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/26/2022] Open
Abstract
3D bioprinting or additive manufacturing is an emerging innovative technology revolutionizing the field of biomedical applications by combining engineering, manufacturing, art, education, and medicine. This process involved incorporating the cells with biocompatible materials to design the required tissue or organ model in situ for various in vivo applications. Conventional 3D printing is involved in constructing the model without incorporating any living components, thereby limiting its use in several recent biological applications. However, this uses additional biological complexities, including material choice, cell types, and their growth and differentiation factors. This state-of-the-art technology consciously summarizes different methods used in bioprinting and their importance and setbacks. It also elaborates on the concept of bioinks and their utility. Biomedical applications such as cancer therapy, tissue engineering, bone regeneration, and wound healing involving 3D printing have gained much attention in recent years. This article aims to provide a comprehensive review of all the aspects associated with 3D bioprinting, from material selection, technology, and fabrication to applications in the biomedical fields. Attempts have been made to highlight each element in detail, along with the associated available reports from recent literature. This review focuses on providing a single platform for cancer and tissue engineering applications associated with 3D bioprinting in the biomedical field.
Collapse
Affiliation(s)
- Swikriti Tripathi
- School of Material Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Subham Shekhar Mandal
- School of Material Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Sudepta Bauri
- School of Material Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Material Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
13
|
Kong F, Mehwish N, Lee BH. Emerging albumin hydrogels as personalized biomaterials. Acta Biomater 2023; 157:67-90. [PMID: 36509399 DOI: 10.1016/j.actbio.2022.11.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Developing biomaterials-based tissue engineering scaffolds with personalized features and intrinsic biocompatibility is appealing and urgent. Through utilizing various strategies, albumin, as the most abundant protein in plasma, could be fabricated into sustainable, cost-effective, and potentially personalized hydrogels that would display enormous biological applications. To date, much of the albumin-based research is primarily engrossed in using albumin as a therapeutic molecule or a drug carrier, not much as a scaffold for tissue engineering. For this reason, we have come up with a detailed and insightful review of recent progress in albumin-based hydrogels having an emphasis on production techniques, material characteristics, and biological uses. It is envisioned that albumin-based scaffolds would be appealing and useful platforms to meet current tissue engineering needs and achieve the goal of clinical translation to benefit patients. STATEMENT OF SIGNIFICANCE: The creation of autologous material-based scaffolds is a potential method for preventing immunological reactions and obtaining the best therapeutic results. Patient-derived albumin hydrogels may consequently provide improved opportunities for personalized treatment due to their abundant supply and minimal immunogenicity. To provide a detailed and insightful summary on albumin-based hydrogels, this review includes latest comprehensive information on their preparation procedures, features, and applications in 3D printing and other biomedical applications. The challenges, along with the future potential for implementing albumin-based hydrogels in clinics, have also been addressed.
Collapse
Affiliation(s)
- Fanhui Kong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Nabila Mehwish
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Bae Hoon Lee
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
14
|
Ghosh S, Sarkar B, Mostafavi E. Nano-based 3D-printed biomaterials for regenerative and translational medicine applications. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
15
|
Chen M, Jiang R, Deng N, Zhao X, Li X, Guo C. Natural polymer-based scaffolds for soft tissue repair. Front Bioeng Biotechnol 2022; 10:954699. [PMID: 35928962 PMCID: PMC9343850 DOI: 10.3389/fbioe.2022.954699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Soft tissues such as skin, muscle, and tendon are easily damaged due to injury from physical activity and pathological lesions. For soft tissue repair and regeneration, biomaterials are often used to build scaffolds with appropriate structures and tailored functionalities that can support cell growth and new tissue formation. Among all types of scaffolds, natural polymer-based scaffolds attract much attention due to their excellent biocompatibility and tunable mechanical properties. In this comprehensive mini-review, we summarize recent progress on natural polymer-based scaffolds for soft tissue repair, focusing on clinical translations and materials design. Furthermore, the limitations and challenges, such as unsatisfied mechanical properties and unfavorable biological responses, are discussed to advance the development of novel scaffolds for soft tissue repair and regeneration toward clinical translation.
Collapse
Affiliation(s)
- Meiwen Chen
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
| | - Rui Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang
| | - Niping Deng
- School of Engineering, Westlake University, Hangzhou, Zhejiang
| | - Xiumin Zhao
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
| | - Xiangjuan Li
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
- *Correspondence: Xiangjuan Li, ; Chengchen Guo,
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang
- *Correspondence: Xiangjuan Li, ; Chengchen Guo,
| |
Collapse
|
16
|
Kuth S, Karakaya E, Reiter N, Schmidt L, Paulsen F, Teßmar J, Budday S, Boccaccini AR. Oxidized Hyaluronic Acid-Gelatin-Based Hydrogels for Tissue Engineering and Soft Tissue Mimicking. Tissue Eng Part C Methods 2022; 28:301-313. [PMID: 35216525 DOI: 10.1089/ten.tec.2022.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hydrogels are ideal materials for mimicking and engineering soft tissue. Hyaluronic acid is a linear polysaccharide native to the human extracellular matrix. In this study, we first develop and characterize two hydrogel compositions built from oxidized HA and gelatin with and without alginate-di-aldehyde (ADA) crosslinked by ionic and enzymatic agents with potential applications in soft tissue engineering and tissue mimicking structures. The stability under incubation conditions was improved by adjusting crosslinking times. Through large-strain mechanical measurements, the hydrogels' properties were compared to human brain tissue and the samples containing ADA revealed similar mechanical properties to the native tissue specimens in cyclic compression-tension. In vitro characterization demonstrated a high viability of encapsulated mouse embryonic fibroblasts and a spreading of the cells in case of ADA-free samples.
Collapse
Affiliation(s)
- Sonja Kuth
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emine Karakaya
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Reiter
- Institute of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Schmidt
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg Teßmar
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Silvia Budday
- Institute of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Germain N, Dhayer M, Dekiouk S, Marchetti P. Current Advances in 3D Bioprinting for Cancer Modeling and Personalized Medicine. Int J Mol Sci 2022; 23:3432. [PMID: 35408789 PMCID: PMC8998835 DOI: 10.3390/ijms23073432] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor cells evolve in a complex and heterogeneous environment composed of different cell types and an extracellular matrix. Current 2D culture methods are very limited in their ability to mimic the cancer cell environment. In recent years, various 3D models of cancer cells have been developed, notably in the form of spheroids/organoids, using scaffold or cancer-on-chip devices. However, these models have the disadvantage of not being able to precisely control the organization of multiple cell types in complex architecture and are sometimes not very reproducible in their production, and this is especially true for spheroids. Three-dimensional bioprinting can produce complex, multi-cellular, and reproducible constructs in which the matrix composition and rigidity can be adapted locally or globally to the tumor model studied. For these reasons, 3D bioprinting seems to be the technique of choice to mimic the tumor microenvironment in vivo as closely as possible. In this review, we discuss different 3D-bioprinting technologies, including bioinks and crosslinkers that can be used for in vitro cancer models and the techniques used to study cells grown in hydrogels; finally, we provide some applications of bioprinted cancer models.
Collapse
Affiliation(s)
- Nicolas Germain
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
- Banque de Tissus, Centre de Biologie-Pathologie, CHU Lille, F-59000 Lille, France
| | - Melanie Dhayer
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
| | - Salim Dekiouk
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
| | - Philippe Marchetti
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
- Banque de Tissus, Centre de Biologie-Pathologie, CHU Lille, F-59000 Lille, France
| |
Collapse
|
18
|
Effects of the composition ratio on the properties of PCL/PLA blends: a kind of thermo-sensitive shape memory polymer composites. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02815-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Additive Manufacturing of Biopolymers for Tissue Engineering and Regenerative Medicine: An Overview, Potential Applications, Advancements, and Trends. INT J POLYM SCI 2021. [DOI: 10.1155/2021/4907027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.
Collapse
|
20
|
Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B 2021; 9:5385-5413. [PMID: 34124724 DOI: 10.1039/d1tb00172h] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decade, 3D bioprinting technology has progressed tremendously in the field of tissue engineering in its ability to fabricate individualized biological constructs with precise geometric designability, which offers us the capability to bridge the divergence between engineered tissue constructs and natural tissues. In this work, we first review the current widely used 3D bioprinting approaches, cells, and materials. Next, the updated applications of this technique in tissue engineering, including bone tissue, cartilage tissue, vascular grafts, skin, neural tissue, heart tissue, liver tissue and lung tissue, are briefly introduced. Then, the prominent advantages of 3D bioprinting in tissue engineering are summarized in detail: rapidly prototyping the customized structure, delivering cell-laden materials with high precision in space, and engineering with a highly controllable microenvironment. The current technical deficiencies of 3D bioprinted constructs in terms of mechanical properties and cell behaviors are afterward illustrated, as well as corresponding improvements. Finally, we conclude with future perspectives about 3D bioprinting in tissue engineering.
Collapse
Affiliation(s)
- Baosen Tan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Shaolei Gan
- Jiangxi Borayer Biotech Co., Ltd, Nanchang 330052, China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wenyong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
21
|
Yu J, Park SA, Kim WD, Ha T, Xin YZ, Lee J, Lee D. Current Advances in 3D Bioprinting Technology and Its Applications for Tissue Engineering. Polymers (Basel) 2020; 12:E2958. [PMID: 33322291 PMCID: PMC7764360 DOI: 10.3390/polym12122958] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
Three-dimensional (3D) bioprinting technology has emerged as a powerful biofabrication platform for tissue engineering because of its ability to engineer living cells and biomaterial-based 3D objects. Over the last few decades, droplet-based, extrusion-based, and laser-assisted bioprinters have been developed to fulfill certain requirements in terms of resolution, cell viability, cell density, etc. Simultaneously, various bio-inks based on natural-synthetic biomaterials have been developed and applied for successful tissue regeneration. To engineer more realistic artificial tissues/organs, mixtures of bio-inks with various recipes have also been developed. Taken together, this review describes the fundamental characteristics of the existing bioprinters and bio-inks that have been currently developed, followed by their advantages and disadvantages. Finally, various tissue engineering applications using 3D bioprinting are briefly introduced.
Collapse
Affiliation(s)
- JunJie Yu
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Korea;
- Department of Nature-Inspired System and Application, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (S.A.P.); (W.D.K.)
| | - Su A Park
- Department of Nature-Inspired System and Application, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (S.A.P.); (W.D.K.)
| | - Wan Doo Kim
- Department of Nature-Inspired System and Application, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (S.A.P.); (W.D.K.)
| | - Taeho Ha
- Department of 3D Printing, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea;
| | - Yuan-Zhu Xin
- Department of Engineering Mechanics, School of Mechanical and Aerospace Engineering, Jilin University, No. 5988, Renmin Street, Changchun 130025, China;
| | - JunHee Lee
- Department of Nature-Inspired System and Application, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (S.A.P.); (W.D.K.)
| | - Donghyun Lee
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Korea;
| |
Collapse
|
22
|
Chung JJ, Im H, Kim SH, Park JW, Jung Y. Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine. Front Bioeng Biotechnol 2020; 8:586406. [PMID: 33251199 PMCID: PMC7671964 DOI: 10.3389/fbioe.2020.586406] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D) printing technology allows fabricating complex and precise structures by stacking materials layer by layer. The fabrication method has a strong potential in the regenerative medicine field to produce customizable and defect-fillable scaffolds for tissue regeneration. Plus, biocompatible materials, bioactive molecules, and cells can be printed together or separately to enhance scaffolds, which can save patients who suffer from shortage of transplantable organs. There are various 3D printing techniques that depend on the types of materials, or inks, used. Here, different types of organs (bone, cartilage, heart valve, liver, and skin) that are aided by 3D printed scaffolds and printing methods that are applied in the biomedical fields are reviewed.
Collapse
Affiliation(s)
- Justin J. Chung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, South Korea
| | - Heejung Im
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, South Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, South Korea
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, South Korea
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| |
Collapse
|
23
|
Janarthanan G, Shin HS, Kim IG, Ji P, Chung EJ, Lee C, Noh I. Self-crosslinking hyaluronic acid-carboxymethylcellulose hydrogel enhances multilayered 3D-printed construct shape integrity and mechanical stability for soft tissue engineering. Biofabrication 2020; 12:045026. [PMID: 32629438 DOI: 10.1088/1758-5090/aba2f7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
One of the primary challenges in extrusion-based 3D bioprinting is the ability to print self-supported multilayered constructs with biocompatible hydrogels. The bioinks should have sufficient post-printing mechanical stability for soft tissue and organ regeneration. Here, we report on the synthesis, characterization and 3D printability of hyaluronic acid (HA)-carboxymethylcellulose (CMC) hydrogels cross-linked through N-acyl-hydrazone bonding. The hydrogel's hydrolytic stability was acquired by the effects of both the prevention of the oxidation of the six-membered rings of HA, and the stabilization of acyl-hydrazone bonds. The shear-thinning and self-healing properties of the hydrogel allowed us to print different 3D constructs (lattice, cubic and tube) of up to 50 layers with superior precision and high post-printing stability without support materials or post-processing depending on their compositions (H7:C3, H5:C5 and H3:C7). Morphological analyses of different zones of the 3D-printed constructs were undertaken for verification of the interconnection of pores. Texture profile analysis (TPA) (hardness (strength), elastic recovery, etc) and cyclic compression studies of the 3D-printed constructs demonstrated exceptional elastic properties and fast recovery after 50% strain, respectively, which have been attributed to the addition of CMC into HA. A model drug quercetin was released in a sustained manner from hydrogels and 3D constructs. In vitro cytotoxicity studies confirmed the excellent cyto-compatibility of these gels. In vivo mice studies prove that these biocompatible hydrogels enhance angiogenesis. The results indicate that controlling the key properties (e.g. self-crosslinking capacity, composition) can lead to the generation of multilayered constructs from 3D-bioprintable HA-CMC hydrogels capable of being leveraged for soft tissue engineering applications.
Collapse
Affiliation(s)
- Gopinathan Janarthanan
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea. Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Puppi D, Chiellini F. Biodegradable Polymers for Biomedical Additive Manufacturing. APPLIED MATERIALS TODAY 2020; 20:100700. [DOI: 10.1016/j.apmt.2020.100700] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Smandri A, Nordin A, Hwei NM, Chin KY, Abd Aziz I, Fauzi MB. Natural 3D-Printed Bioinks for Skin Regeneration and Wound Healing: A Systematic Review. Polymers (Basel) 2020; 12:polym12081782. [PMID: 32784960 PMCID: PMC7463743 DOI: 10.3390/polym12081782] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional bioprinting has rapidly paralleled many biomedical applications and assisted in advancing the printing of complex human organs for a better therapeutic practice. The objective of this systematic review is to highlight evidence from the existing studies and evaluate the effectiveness of using natural-based bioinks in skin regeneration and wound healing. A comprehensive search of all relevant original articles was performed based on prespecified eligibility criteria. The search was carried out using PubMed, Web of Science, Scopus, Medline Ovid, and ScienceDirect. Eighteen articles fulfilled the inclusion and exclusion criteria. The animal studies included a total of 151 animals with wound defects. A variety of natural bioinks and skin living cells were implanted in vitro to give insight into the technique through different assessments and findings. Collagen and gelatin hydrogels were most commonly used as bioinks. The follow-up period ranged between one day and six weeks. The majority of animal studies reported that full wound closure was achieved after 2–4 weeks. The results of both in vitro cell culture and in vivo animal studies showed the positive impact of natural bioinks in promoting wound healing. Future research should be focused more on direct the bioprinting of skin wound treatments on animal models to open doors for human clinical trials.
Collapse
Affiliation(s)
- Ali Smandri
- Centre for Tissue Engineering Centre and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (N.M.H.)
| | - Abid Nordin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ng Min Hwei
- Centre for Tissue Engineering Centre and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (N.M.H.)
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Izhar Abd Aziz
- 3D Gens Sdn Bhd, 18, Jalan Kerawang U8/108, Bukit Jelutong, Shah Alam 40150, Selangor, Malaysia;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering Centre and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (N.M.H.)
- Correspondence: ; Tel.: +60-196-551-020
| |
Collapse
|
26
|
Liu F, Wang X. Synthetic Polymers for Organ 3D Printing. Polymers (Basel) 2020; 12:E1765. [PMID: 32784562 PMCID: PMC7466039 DOI: 10.3390/polym12081765] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) printing, known as the most promising approach for bioartificial organ manufacturing, has provided unprecedented versatility in delivering multi-functional cells along with other biomaterials with precise control of their locations in space. The constantly emerging 3D printing technologies are the integration results of biomaterials with other related techniques in biology, chemistry, physics, mechanics and medicine. Synthetic polymers have played a key role in supporting cellular and biomolecular (or bioactive agent) activities before, during and after the 3D printing processes. In particular, biodegradable synthetic polymers are preferable candidates for bioartificial organ manufacturing with excellent mechanical properties, tunable chemical structures, non-toxic degradation products and controllable degradation rates. In this review, we aim to cover the recent progress of synthetic polymers in organ 3D printing fields. It is structured as introducing the main approaches of 3D printing technologies, the important properties of 3D printable synthetic polymers, the successful models of bioartificial organ printing and the perspectives of synthetic polymers in vascularized and innervated organ 3D printing areas.
Collapse
Affiliation(s)
- Fan Liu
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
- Department of Orthodontics, School of Stomatology, China Medical University, No. 117 North Nanjing Street, Shenyang 110003, China
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Cui X, Li J, Hartanto Y, Durham M, Tang J, Zhang H, Hooper G, Lim K, Woodfield T. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Adv Healthc Mater 2020; 9:e1901648. [PMID: 32352649 DOI: 10.1002/adhm.201901648] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
3D bioprinting involves the combination of 3D printing technologies with cells, growth factors and biomaterials, and has been considered as one of the most advanced tools for tissue engineering and regenerative medicine (TERM). However, despite multiple breakthroughs, it is evident that numerous challenges need to be overcome before 3D bioprinting will eventually become a clinical solution for a variety of TERM applications. To produce a 3D structure that is biologically functional, cell-laden bioinks must be optimized to meet certain key characteristics including rheological properties, physico-mechanical properties, and biofunctionality; a difficult task for a single component bioink especially for extrusion based bioprinting. As such, more recent research has been centred on multicomponent bioinks consisting of a combination of two or more biomaterials to improve printability, shape fidelity and biofunctionality. In this article, multicomponent hydrogel-based bioink systems are systemically reviewed based on the inherent nature of the bioink (natural or synthetic hydrogels), including the most current examples demonstrating properties and advances in application of multicomponent bioinks, specifically for extrusion based 3D bioprinting. This review article will assist researchers in the field in identifying the most suitable bioink based on their requirements, as well as pinpointing current unmet challenges in the field.
Collapse
Affiliation(s)
- Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
| | - Jun Li
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Yusak Hartanto
- Department of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mitchell Durham
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Hu Zhang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| |
Collapse
|
28
|
Dalton PD, Woodfield TBF, Mironov V, Groll J. Advances in Hybrid Fabrication toward Hierarchical Tissue Constructs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902953. [PMID: 32537395 PMCID: PMC7284200 DOI: 10.1002/advs.201902953] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/17/2020] [Indexed: 05/05/2023]
Abstract
The diversity of manufacturing processes used to fabricate 3D implants, scaffolds, and tissue constructs is continuously increasing. This growing number of different applicable fabrication technologies include electrospinning, melt electrowriting, volumetric-, extrusion-, and laser-based bioprinting, the Kenzan method, and magnetic and acoustic levitational bioassembly, to name a few. Each of these fabrication technologies feature specific advantages and limitations, so that a combination of different approaches opens new and otherwise unreachable opportunities for the fabrication of hierarchical cell-material constructs. Ongoing challenges such as vascularization, limited volume, and repeatability of tissue constructs at the resolution required to mimic natural tissue is most likely greater than what one manufacturing technology can overcome. Therefore, the combination of at least two different manufacturing technologies is seen as a clear and necessary emerging trend, especially within biofabrication. This hybrid approach allows more complex mechanics and discrete biomimetic structures to address mechanotransduction and chemotactic/haptotactic cues. Pioneering milestone papers in hybrid fabrication for biomedical purposes are presented and recent trends toward future manufacturing platforms are analyzed.
Collapse
Affiliation(s)
- Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of WürzburgWürzburg97070Germany
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of Otago ChristchurchChristchurch8011New Zealand
- New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE)Auckland0600‐2699New Zealand
| | - Vladimir Mironov
- 3D Bioprinting SolutionsMoscow115409Russia
- Institute for Regenerative MedicineSechenov Medical UniversityMoscow119992Russia
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of WürzburgWürzburg97070Germany
| |
Collapse
|
29
|
Tetsuka H, Shin SR. Materials and technical innovations in 3D printing in biomedical applications. J Mater Chem B 2020; 8:2930-2950. [PMID: 32239017 PMCID: PMC8092991 DOI: 10.1039/d0tb00034e] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3D printing is a rapidly growing research area, which significantly contributes to major innovations in various fields of engineering, science, and medicine. Although the scientific advancement of 3D printing technologies has enabled the development of complex geometries, there is still an increasing demand for innovative 3D printing techniques and materials to address the challenges in building speed and accuracy, surface finish, stability, and functionality. In this review, we introduce and review the recent developments in novel materials and 3D printing techniques to address the needs of the conventional 3D printing methodologies, especially in biomedical applications, such as printing speed, cell growth feasibility, and complex shape achievement. A comparative study of these materials and technologies with respect to the 3D printing parameters will be provided for selecting a suitable application-based 3D printing methodology. Discussion of the prospects of 3D printing materials and technologies will be finally covered.
Collapse
Affiliation(s)
- Hiroyuki Tetsuka
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
30
|
Designing vascular supportive albumen-rich composite bioink for organ 3D printing. J Mech Behav Biomed Mater 2020; 104:103642. [DOI: 10.1016/j.jmbbm.2020.103642] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
|
31
|
Jeong HJ, Nam H, Jang J, Lee SJ. 3D Bioprinting Strategies for the Regeneration of Functional Tubular Tissues and Organs. Bioengineering (Basel) 2020; 7:E32. [PMID: 32244491 PMCID: PMC7357036 DOI: 10.3390/bioengineering7020032] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023] Open
Abstract
It is difficult to fabricate tubular-shaped tissues and organs (e.g., trachea, blood vessel, and esophagus tissue) with traditional biofabrication techniques (e.g., electrospinning, cell-sheet engineering, and mold-casting) because these have complicated multiple processes. In addition, the tubular-shaped tissues and organs have their own design with target-specific mechanical and biological properties. Therefore, the customized geometrical and physiological environment is required as one of the most critical factors for functional tissue regeneration. 3D bioprinting technology has been receiving attention for the fabrication of patient-tailored and complex-shaped free-form architecture with high reproducibility and versatility. Printable biocomposite inks that can facilitate to build tissue constructs with polymeric frameworks and biochemical microenvironmental cues are also being actively developed for the reconstruction of functional tissue. In this review, we delineated the state-of-the-art of 3D bioprinting techniques specifically for tubular tissue and organ regeneration. In addition, this review described biocomposite inks, such as natural and synthetic polymers. Several described engineering approaches using 3D bioprinting techniques and biocomposite inks may offer beneficial characteristics for the physiological mimicry of human tubular tissues and organs.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea;
| | - Hyoryung Nam
- Department of Creative IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea;
| | - Jinah Jang
- Department of Creative IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea;
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Institute of Convergence Science, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seung-Jae Lee
- Department of Mechanical Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea;
- Department of Mechanical and Design Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea
| |
Collapse
|
32
|
Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From Shape to Function: The Next Step in Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906423. [PMID: 32045053 PMCID: PMC7116209 DOI: 10.1002/adma.201906423] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Indexed: 05/04/2023]
Abstract
In 2013, the "biofabrication window" was introduced to reflect the processing challenge for the fields of biofabrication and bioprinting. At that time, the lack of printable materials that could serve as cell-laden bioinks, as well as the limitations of printing and assembly methods, presented a major constraint. However, recent developments have now resulted in the availability of a plethora of bioinks, new printing approaches, and the technological advancement of established techniques. Nevertheless, it remains largely unknown which materials and technical parameters are essential for the fabrication of intrinsically hierarchical cell-material constructs that truly mimic biologically functional tissue. In order to achieve this, it is urged that the field now shift its focus from materials and technologies toward the biological development of the resulting constructs. Therefore, herein, the recent material and technological advances since the introduction of the biofabrication window are briefly summarized, i.e., approaches how to generate shape, to then focus the discussion on how to acquire the biological function within this context. In particular, a vision of how biological function can evolve from the possibility to determine shape is outlined.
Collapse
Affiliation(s)
- Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Ruben G Scheuring
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Juergen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
33
|
Naderi N, Griffin MF, Mosahebi A, Butler PE, Seifalian AM. Adipose derived stem cells and platelet rich plasma improve the tissue integration and angiogenesis of biodegradable scaffolds for soft tissue regeneration. Mol Biol Rep 2020; 47:2005-2013. [PMID: 32072400 PMCID: PMC7688190 DOI: 10.1007/s11033-020-05297-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/31/2020] [Indexed: 11/30/2022]
Abstract
Current surgical reconstruction for soft tissue replacement involves lipotransfer to restore soft tissue replacements but is limited by survival and longevity of the fat tissue. Alternative approaches to overcome these limitations include using biodegradable scaffolds with stem cells with growth factors to generate soft tissue. Adipose derived stem cells (ADSCs) offer great potential to differentiate into adipose, and can be delivered using biodegradable scaffolds. However, the optimal scaffold to maximise this approach is unknown. This study investigates the biocompatibility of nanocomposite scaffolds (POSS-PCL) to deliver ADSCs with and without the addition of growth factors using platelet rich plasma (PRP) in vivo. Rat ADSCs were isolated and then seeded on biodegradable scaffolds (POSS-PCL). In addition, donor rats were used to isolate PRP to modify the scaffolds. The implants were then subcutaneously implanted for 3-months to assess the effect of PRP and ADSC on POSS-PCL scaffolds biocompatibility. Histology after explanation was examined to assess tissue integration (H&E) and collagen production (Massons Trichome). Immunohistochemistry was used to assess angiogenesis (CD3, α-SMA), immune response (CD45, CD68) and adipose formation (PPAR-γ). At 3-months PRP-ADSC-POSS-PCL scaffolds demonstrated significantly increased tissue integration and angiogenesis compared to PRP, ADSC and unmodified scaffolds (p < 0.05). In addition, PRP-ADSC-POSS-PCL scaffolds showed similar levels of CD45 and CD68 staining compared to unmodified scaffolds. Furthermore, there was increased PPAR-γ staining demonstrated at 3-months with PRP-ADSC-POSS-PCL scaffolds (p < 0.05). POSS-PCL nanocomposite scaffolds provide an effective delivery system for ADSCs. PRP and ADSC work synergistically to enhance the biocompatibility of POSS-PCL scaffolds and provide a platform technology for soft tissue regeneration.
Collapse
Affiliation(s)
- N Naderi
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK.,Royal Free London NHS Foundation Trust Hospital, London, UK.,Plastic and Reconstructive Surgery Department, Royal Free Hospital, University College London, Pond Street, London, UK
| | - M F Griffin
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK. .,Royal Free London NHS Foundation Trust Hospital, London, UK. .,Plastic and Reconstructive Surgery Department, Royal Free Hospital, University College London, Pond Street, London, UK.
| | - A Mosahebi
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK.,Royal Free London NHS Foundation Trust Hospital, London, UK.,Plastic and Reconstructive Surgery Department, Royal Free Hospital, University College London, Pond Street, London, UK
| | - P E Butler
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK.,Royal Free London NHS Foundation Trust Hospital, London, UK.,Plastic and Reconstructive Surgery Department, Royal Free Hospital, University College London, Pond Street, London, UK
| | - A M Seifalian
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK.,Director/Professor Nanotechnology & Regenerative Medicine, NanoRegMed Ltd, London, UK
| |
Collapse
|
34
|
Gong D, Lin Q, Shao Z, Chen X, Yang Y. Preparing 3D-printable silk fibroin hydrogels with robustness by a two-step crosslinking method. RSC Adv 2020; 10:27225-27234. [PMID: 35515806 PMCID: PMC9055588 DOI: 10.1039/d0ra04789a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Schematic showing the fabrication process of the 3D-printed robust double-network RSF hydrogels.
Collapse
Affiliation(s)
- Dafei Gong
- Research Center for Analysis and Measurement
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Qinrui Lin
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai
- People's Republic of China
| | - Zhengzhong Shao
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai
- People's Republic of China
| | - Xin Chen
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai
- People's Republic of China
| | - Yuhong Yang
- Research Center for Analysis and Measurement
- Fudan University
- Shanghai 200433
- People's Republic of China
| |
Collapse
|
35
|
Pan H, Zheng B, Shen H, Qi M, Shang Y, Wu C, Zhu R, Cheng L, Wang Q. Strength-tunable printing of xanthan gum hydrogel via enzymatic polymerization and amide bioconjugation. Chem Commun (Camb) 2020; 56:3457-3460. [DOI: 10.1039/d0cc00326c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amide bioconjugation and interfacial enzyme polymerization for improving the mechanical strength of hydrogel bio-ink.
Collapse
Affiliation(s)
- Hui Pan
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Bolin Zheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education
- Orthopaedic Department of Tongji Hospital
- School of Medicine
- Tongji University
- 200065 Shanghai
| | - Hongdou Shen
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Meiyuan Qi
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Yinghui Shang
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Chu Wu
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education
- Orthopaedic Department of Tongji Hospital
- School of Medicine
- Tongji University
- 200065 Shanghai
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education
- Orthopaedic Department of Tongji Hospital
- School of Medicine
- Tongji University
- 200065 Shanghai
| | - Qigang Wang
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education
| |
Collapse
|
36
|
Zhang Y, Zhou D, Chen J, Zhang X, Li X, Zhao W, Xu T. Biomaterials Based on Marine Resources for 3D Bioprinting Applications. Mar Drugs 2019; 17:E555. [PMID: 31569366 PMCID: PMC6835706 DOI: 10.3390/md17100555] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) bioprinting has become a flexible tool in regenerative medicine with potential for various applications. Further development of the new 3D bioprinting field lies in suitable bioink materials with satisfied printability, mechanical integrity, and biocompatibility. Natural polymers from marine resources have been attracting increasing attention in recent years, as they are biologically active and abundant when comparing to polymers from other resources. This review focuses on research and applications of marine biomaterials for 3D bioprinting. Special attention is paid to the mechanisms, material requirements, and applications of commonly used 3D bioprinting technologies based on marine-derived resources. Commonly used marine materials for 3D bioprinting including alginate, carrageenan, chitosan, hyaluronic acid, collagen, and gelatin are also discussed, especially in regards to their advantages and applications.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| | - Dezhi Zhou
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China.
| | - Jianwei Chen
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| | - Xiuxiu Zhang
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| | - Xinda Li
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China.
| | - Wenxiang Zhao
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China.
| | - Tao Xu
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
37
|
Singh YP, Bandyopadhyay A, Mandal BB. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33684-33696. [PMID: 31453678 DOI: 10.1021/acsami.9b11644] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cartilage tissue is deprived of intrinsic self-regeneration capability; hence, its damage often progresses to a chronic condition which reduces the quality of life. Toward the fabrication of functional tissue substitutes, three-dimensional (3D) bioprinting has progressed vastly over the last few decades. However, this progress is challenged by the difficulty in developing suitable bioink materials as most of them require toxic chemical cross-linking. In this study, our goal was to develop a cross-linker-free bioink with optimal rheology for polymer extrusion, aqueous, and nontoxic processing and offers structural support for cartilage regeneration. Toward this, we use the self-gelling ability of silk fibroin blends (Bombyx mori and Philosamia ricini) along with gelatin as a bulking agent. Silk and gelatin interact with each other through entanglement and physical cross-linking. The ink was rheologically and structurally optimized for printing efficiency in printing grid-like structures. The printed 3D constructs show optimal swelling capability, degradability, and compressive strength. Further, the construct supports the growth and proliferation of encapsulated chondrocytes and formation of the cartilaginous extracellular matrix as indicated by the increased sulfated glycosaminoglycan and collagen contents. This was further corroborated by the upregulation of chondrogenic gene expression with minimal hypertrophy of chondrocytes. Additionally, the construct demonstrates in vitro and in vivo biocompatibility. Notably, the ink demonstrates good print fidelity for printing anatomical structures such as the human ear enabled by optimized extrudability at adequate resolution. Altogether, the results indicate that the developed cross-linker-free silk-gelatin polymer-based bioink demonstrated high potential for its 3D bioprintability and application in cartilage tissue engineering.
Collapse
|
38
|
Kathawala MH, Ng WL, Liu D, Naing MW, Yeong WY, Spiller KL, Van Dyke M, Ng KW. Healing of Chronic Wounds: An Update of Recent Developments and Future Possibilities. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:429-444. [PMID: 31068101 DOI: 10.1089/ten.teb.2019.0019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic wounds are the result of disruptions in the body's usual process of healing. They are not only a source of significant pain and discomfort but also, more importantly, an unguarded port of entry for pathogens into the body. While our current understanding of this phenomenon is far from complete, findings in physiological patterns and advancements in wound healing technologies have helped develop wound management and healing solutions to this long-standing medical challenge. This review presents an overview of known wound healing mechanics, abnormalities that lead to chronic wounds, and a summary of established and new wound healing technologies. Various approaches to heal wounds are discussed, from dermal replacements to advanced biomaterial-based treatments, from cell-, synthetic-, and composite-based approaches to preclinical approaches, which make developing such products possible. While tested breakthrough products are described, the authors focused more on recently developed innovations, which are at varying stages of maturity. The review concludes with a note on future perspectives and opinions on where the field and industry are headed and where they should be. Impact Statement Wound healing is an important area of research and clinical practice, and has captured the attention of tissue engineers since the nascent beginnings of the discipline. Tissue-engineered skin was the first FDA-approved product, achieved in 1996. Despite this success, and the passage of time, healing wounds, particularly chronic wounds, remains a vexing challenge. This comprehensive review article will provide readers with a synopsis of current issues, research approaches, animal models, technologies, and products that span the continuum from early development to clinical studies, in the hope of fueling new interests and ideas to overcome this long-standing medical challenge.
Collapse
Affiliation(s)
| | - Wei Long Ng
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dan Liu
- Singapore Institute of Manufacturing Technology (SIMTECH), Singapore, Singapore
| | - May Win Naing
- Singapore Institute of Manufacturing Technology (SIMTECH), Singapore, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Mark Van Dyke
- Department of Biomedical Engineering and Mechanics (BEAM), Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Skin Research Institute of Singapore (SRIS), Singapore, Singapore.,Environmental Chemistry & Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Singapore, Singapore
| |
Collapse
|
39
|
Das D, Noh I. Overviews of Biomimetic Medical Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1064:3-24. [PMID: 30471023 DOI: 10.1007/978-981-13-0445-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter describes the overviews of biomimetic medical materials which covers innovation and significance of terminology, diverse fabrication methods, and technologies ranges from nanotechnology to 3D printing to develop biomimetic materials for medical applications. It also depicts specific fundamental characteristics required for a material to be a model biomimetic material for particular medical application. It basically outlines current statuses of biomimetic medical materials used for tissue engineering and regenerative medicine, drug/protein delivery, bioimaging, biosensing, and 3D bioprinting technology. It also illustrates the effect of functionalization of a material through chemical and biological approaches towards different applications. Not only, the key properties and potential applications of the biomimetic materials, but it also explains the protection and utilization of intellectual property associated with biomedical materials.
Collapse
Affiliation(s)
- Dipankar Das
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, South Korea.,Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, South Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, South Korea. .,Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, South Korea.
| |
Collapse
|
40
|
Eswaramoorthy SD, Ramakrishna S, Rath SN. Recent advances in three-dimensional bioprinting of stem cells. J Tissue Eng Regen Med 2019; 13:908-924. [PMID: 30866145 DOI: 10.1002/term.2839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
Abstract
In spite of being a new field, three-dimensional (3D) bioprinting has undergone rapid growth in the recent years. Bioprinting methods offer a unique opportunity for stem cell distribution, positioning, and differentiation at the microscale to make the differentiated architecture of any tissue while maintaining precision and control over the cellular microenvironment. Bioprinting introduces a wide array of approaches to modify stem cell fate. This review discusses these methodologies of 3D bioprinting stem cells. Fabricating a fully operational tissue or organ construct with a long life will be the most significant challenge of 3D bioprinting. Once this is achieved, a whole human organ can be fabricated for the defect place at the site of surgery.
Collapse
Affiliation(s)
- Sindhuja D Eswaramoorthy
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India
| | - Seeram Ramakrishna
- Centre for Nanofibers & Nanotechnology, NUS Nanoscience & Nanotechnology Initiative, Singapore
| | - Subha N Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India
| |
Collapse
|
41
|
Current Challenges and Emergent Technologies for Manufacturing Artificial Right Ventricle to Pulmonary Artery (RV-PA) Cardiac Conduits. Cardiovasc Eng Technol 2019; 10:205-215. [DOI: 10.1007/s13239-019-00406-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
|
42
|
Gao G, Kim BS, Jang J, Cho DW. Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication. ACS Biomater Sci Eng 2019; 5:1150-1169. [PMID: 33405637 DOI: 10.1021/acsbiomaterials.8b00691] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reconstructing human organs is one of the ultimate goals of the medical industry. Organ printing utilizing three-dimensional cell printing technology to fabricate artificial living organ equivalents has shed light on the advancement of this field into a new era. Among three currently applied techniques (inkjet, laser-assisted, and extrusion-based), extrusion-based cell printing (ECP) has evoked the majority of interest due to its low cost, wide range of applicable materials, and ease of spatial and depositional controllability. Major challenges in organ reconstruction include difficulties in precisely fabricating complex structural features, creating perfusable and functional vasculatures, and mimicking biophysical and biochemical characteristics in the printed constructs. In this review, we describe the merits and limitations of ECP for organ fabrication and discuss its recent advances aimed at overcoming these challenges. In addition, we delineate the expected future techniques for printing live tissue or organ substitutes.
Collapse
|
43
|
Abdulghani S, Morouço PG. Biofabrication for osteochondral tissue regeneration: bioink printability requirements. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:20. [PMID: 30689057 DOI: 10.1007/s10856-019-6218-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Biofabrication allows the formation of 3D scaffolds through a precise spatial control. This is of foremost importance when aiming to mimic heterogeneous and anisotropic architecture, such as that of the osteochondral tissue. Osteochondral defects are a supreme challenge for tissue engineering due to the compositional and structural complexity of stratified architecture and contrasting biomechanical properties of the cartilage-bone interface. This review highlights the advancements and retreats witnessed by using developed bioinks for tissue regeneration, taking osteochondral tissue as a challenging example. Methods, materials and requirements for bioprinting were discussed, highlighting the pre and post-processing factors that researchers should consider towards the development of a clinical treatment.
Collapse
Affiliation(s)
- Saba Abdulghani
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal - Zona Industrial., Marinha Grande, 2430-028, Portugal.
| | - Pedro G Morouço
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal - Zona Industrial., Marinha Grande, 2430-028, Portugal
| |
Collapse
|
44
|
Saroia J, Yanen W, Wei Q, Zhang K, Lu T, Zhang B. A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective. Biodes Manuf 2018. [DOI: 10.1007/s42242-018-0029-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Lee J, Lee SH, Kim BS, Cho YS, Park Y. Development and Evaluation of Hyaluronic Acid-Based Hybrid Bio-Ink for Tissue Regeneration. Tissue Eng Regen Med 2018; 15:761-769. [PMID: 30603594 DOI: 10.1007/s13770-018-0144-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/17/2018] [Accepted: 07/10/2018] [Indexed: 01/21/2023] Open
Abstract
Background Bioprinting has recently appeared as a powerful tool for building complex tissue and organ structures. However, the application of bioprinting to regenerative medicine has limitations, due to the restricted choices of bio-ink for cytocompatible cell encapsulation and the integrity of the fabricated structures. Methods In this study, we developed hybrid bio-inks based on acrylated hyaluronic acid (HA) for immobilizing bio-active peptides and tyramine-conjugated hyaluronic acids for fast gelation. Results Conventional acrylated HA-based hydrogels have a gelation time of more than 30 min, whereas hybrid bio-ink has been rapidly gelated within 200 s. Fibroblast cells cultured in this hybrid bio-ink up to 7 days showed > 90% viability. As a guidance cue for stem cell differentiation, we immobilized four different bio-active peptides: BMP-7-derived peptides (BMP-7D) and osteopontin for osteogenesis, and substance-P (SP) and Ac-SDKP (SDKP) for angiogenesis. Mesenchymal stem cells cultured in these hybrid bio-inks showed the highest angiogenic and osteogenic activity cultured in bio-ink immobilized with a SP or BMP-7D peptide. This bio-ink was loaded in a three-dimensional (3D) bioprinting device showing reproducible printing features. Conclusion We have developed bio-inks that combine biochemical and mechanical cues. Biochemical cues were able to regulate differentiation of cells, and mechanical cues enabled printing structuring. This multi-functional bio-ink can be used for complex tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jaeyeon Lee
- 1Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Se-Hwan Lee
- 2Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538 Republic of Korea
| | - Byung Soo Kim
- 3Department of Internal Medicine, Korea University Medical Center, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Young-Sam Cho
- 2Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538 Republic of Korea
| | - Yongdoo Park
- 1Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
46
|
Mora-Boza A, Lopez-Donaire ML. Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:221-245. [PMID: 29691824 DOI: 10.1007/978-3-319-76711-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the recent years, the advent of 3D bioprinting technology has marked a milestone in osteochondral tissue engineering (TE) research. Nowadays, the traditional used techniques for osteochondral regeneration remain to be inefficient since they cannot mimic the complexity of joint anatomy and tissue heterogeneity of articular cartilage. These limitations seem to be solved with the use of 3D bioprinting which can reproduce the anisotropic extracellular matrix (ECM) and heterogeneity of this tissue. In this chapter, we present the most commonly used 3D bioprinting approaches and then discuss the main criteria that biomaterials must meet to be used as suitable bioinks, in terms of mechanical and biological properties. Finally, we highlight some of the challenges that this technology must overcome related to osteochondral bioprinting before its clinical implementation.
Collapse
Affiliation(s)
- Ana Mora-Boza
- Institute of Polymer Science and Technology-ICTP-CSIC, Madrid, Spain.
- CIBER, Health Institute Carlos III, Madrid, Spain.
| | | |
Collapse
|
47
|
Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JY, Robinson KS, Wang CH. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adv Drug Deliv Rev 2018; 132:270-295. [PMID: 30055210 DOI: 10.1016/j.addr.2018.07.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
Bioprinted skin tissue has the potential for aiding drug screening, formulation development, clinical transplantation, chemical and cosmetic testing, as well as basic research. Limitations of conventional skin tissue engineering approaches have driven the development of biomimetic skin equivalent via 3D bioprinting. A key hope for bioprinting skin is the improved tissue authenticity over conventional skin equivalent construction, enabling the precise localization of multiple cell types and appendages within a construct. The printing of skin faces challenges broadly associated with general 3D bioprinting, including the selection of cell types and biomaterials, and additionally requires in vitro culture formats that allow for growth at an air-liquid interface. This paper provides a thorough review of current 3D bioprinting technologies used to engineer human skin constructs and presents the overall pipelines of designing a biomimetic artificial skin via 3D bioprinting from the design phase (i.e. pre-processing phase) through the tissue maturation phase (i.e. post-processing) and into final product evaluation for drug screening, development, and drug delivery applications.
Collapse
|
48
|
Abstract
The therapeutic replacement of diseased tubular tissue is hindered by the availability and suitability of current donor, autologous and synthetically derived protheses. Artificially created, tissue engineered, constructs have the potential to alleviate these concerns with reduced autoimmune response, high anatomical accuracy, long-term patency and growth potential. The advent of 3D bioprinting technology has further supplemented the technological toolbox, opening up new biofabrication research opportunities and expanding the therapeutic potential of the field. In this review, we highlight the challenges facing those seeking to create artificial tubular tissue with its associated complex macro- and microscopic architecture. Current biofabrication approaches, including 3D printing techniques, are reviewed and future directions suggested.
Collapse
|
49
|
Abstract
Background The worldwide demand for the organ replacement or tissue regeneration is increasing steadily. The advancements in tissue engineering and regenerative medicine have made it possible to regenerate such damaged organs or tissues into functional organ or tissue with the help of 3D bioprinting. The main component of the 3D bioprinting is the bioink, which is crucial for the development of functional organs or tissue structures. The bioinks used in 3D printing technology require so many properties which are vital and need to be considered during the selection. Combination of different methods and enhancements in properties are required to develop more successful bioinks for the 3D printing of organs or tissue structures. Main body This review consists of the recent state-of-art of polymer-based bioinks used in 3D printing for applications in tissue engineering and regenerative medicine. The subsection projects the basic requirements for the selection of successful bioinks for 3D printing and developing 3D tissues or organ structures using combinations of bioinks such as cells, biomedical polymers and biosignals. Different bioink materials and their properties related to the biocompatibility, printability, mechanical properties, which are recently reported for 3D printing are discussed in detail. Conclusion Many bioinks formulations have been reported from cell-biomaterials based bioinks to cell-based bioinks such as cell aggregates and tissue spheroids for tissue engineering and regenerative medicine applications. Interestingly, more tunable bioinks, which are biocompatible for live cells, printable and mechanically stable after printing are emerging with the help of functional polymeric biomaterials, their modifications and blending of cells and hydrogels. These approaches show the immense potential of these bioinks to produce more complex tissue/organ structures using 3D bioprinting in the future.
Collapse
Affiliation(s)
- Janarthanan Gopinathan
- 1Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-Gu, Seoul, 01811 Republic of Korea.,2Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-Gu Seoul, 01811 Republic of Korea
| | - Insup Noh
- 1Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-Gu, Seoul, 01811 Republic of Korea.,2Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-Gu Seoul, 01811 Republic of Korea
| |
Collapse
|
50
|
Oderinde O, Liu S, Li K, Kang M, Imtiaz H, Yao F, Fu G. Multifaceted polymeric materials in three-dimensional processing (3DP) technologies: Current progress and prospects. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Olayinka Oderinde
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| | - Shunli Liu
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| | - Kewen Li
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| | - Mengmeng Kang
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| | - Hussain Imtiaz
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| | - Fang Yao
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| |
Collapse
|