1
|
McDonnell EE, Ní Néill T, Wilson N, Darwish SL, Butler JS, Buckley CT. In silico modeling the potential clinical effect of growth factor treatment on the metabolism of human nucleus pulposus cells. JOR Spine 2024; 7:e1352. [PMID: 39092165 PMCID: PMC11291302 DOI: 10.1002/jsp2.1352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Background While growth factors have the potential to halt degeneration and decrease inflammation in animal models, the literature investigating the effect of dosage on human cells is lacking. Moreover, despite the completion of clinical trials using growth differentiation factor-5 (GDF-5), no results have been publicly released. Aims The overall objective was to quantitatively assess the effect of three clinically relevant concentrations of GDF-5 (0.25, 1, and 2 mg) as a therapeutic for disc regeneration. Materials and methods Firstly, this work experimentally determined the effects of GDF-5 concentration on the metabolic and matrix synthesis rates of human nucleus pulposus (NP) cells. Secondly, in silico modeling was employed to predict the subsequent regenerative effect of different GDF-5 treatments (± cells). Results This study suggests a trend of increased matrix synthesis with 0.25 and 1 mg of GDF-5. However, 2 mg of GDF-5 significantly upregulates oxygen consumption. Despite this, in silico models highlight the potential of growth factors in promoting matrix synthesis compared to cell-only treatments, without significantly perturbing the nutrient microenvironment. Discussion This work elucidates the potential of GDF-5 on human NP cells. Although the results did not reveal statistical differences across all doses, the variability and response among donors is an interesting finding. It highlights the complexity of human response to biological treatments and reinforces the need for further human research and personalized approaches. Furthermore, this study raises a crucial question about whether these potential biologics are more regenerative in nature or better suited as prophylactic therapies for younger patient groups. Conclusion Biological agents exhibit unique characteristics and features, demanding tailored development strategies and individualized assessments rather than a one-size-fits-all approach. Therefore, the journey to realizing the full potential of biological therapies is long and costly. Nonetheless, it holds the promise of revolutionizing spinal healthcare and improving the quality of life for patients suffering from discogenic back pain.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Tara Ní Néill
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Niamh Wilson
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Stacey L. Darwish
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
- Department of Trauma and OrthopaedicsNational Orthopaedic Hospital, CappaghDublinIreland
- Department of OrthopaedicsSt Vincent's University HospitalDublinIreland
| | - Joseph S. Butler
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland, Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
2
|
Han H, Chen BT, Liu Y, Wang Y, Xing L, Wang H, Zhou TJ, Jiang HL. Engineered stem cell-based strategy: A new paradigm of next-generation stem cell product in regenerative medicine. J Control Release 2024; 365:981-1003. [PMID: 38123072 DOI: 10.1016/j.jconrel.2023.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Stem cells have garnered significant attention in regenerative medicine owing to their abilities of multi-directional differentiation and self-renewal. Despite these encouraging results, the market for stem cell products yields limited, which is largely due to the challenges faced to the safety and viability of stem cells in vivo. Besides, the fate of cells re-infusion into the body unknown is also a major obstacle to stem cell therapy. Actually, both the functional protection and the fate tracking of stem cells are essential in tissue homeostasis, repair, and regeneration. Recent studies have utilized cell engineering techniques to modify stem cells for enhancing their treatment efficiency or imparting them with novel biological capabilities, in which advances demonstrate the immense potential of engineered cell therapy. In this review, we proposed that the "engineered stem cells" are expected to represent the next generation of stem cell therapies and reviewed recent progress in this area. We also discussed potential applications of engineered stem cells and highlighted the most common challenges that must be addressed. Overall, this review has important guiding significance for the future design of new paradigms of stem cell products to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hui Wang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
3
|
Schol J, Sakai D. Comprehensive narrative review on the analysis of outcomes from cell transplantation clinical trials for discogenic low back pain. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 13:100195. [PMID: 36655116 PMCID: PMC9841054 DOI: 10.1016/j.xnsj.2022.100195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Background Intervertebral disc (IVD) degeneration is one of the primary causes of low back pain (LBP) and despite a prominent prevalence, present treatment options remain inadequate for a large portion of LBP patients. New developments in regenerative therapeutics offer potentially powerful medical tools to modify this pathology, with specific focus on (stem) cell transplantations. Multiple clinical trials have since reported overall beneficial outcomes favoring cell therapy. Nonetheless, the significance of these improvements is often not (clearly) discussed. As such, this narrative review aims to summarize the significance of the reported improvements from human clinical trials on IVD-targeted cell therapy. Methods Through a comprehensive narrative review we discuss the improvements in pain, disability, quality of life, and imaging modalities and reported adverse events following cell therapy for discogenic pain. Results Most clinical trials were able to report clear and significant improvements in pain and disability outcomes. Imaging and quality of life improvements however were not as clearly reported but did present some enhancements for a select number of patients. Finally, whether cell therapy can outperform placebo treatment remains intangible. Conclusions Our review highlights the clinical significance of observed trends in pain and disability improvement. Nevertheless, reporting quality was found unsatisfactory and large-scale randomized controlled studies remain small in number. Future studies and articles should put more emphasis on improvements in imaging modalities and compare outcomes to (placebo) control groups to fully elucidate the efficacy and safety of cellular therapeutics against LBP.
Collapse
Affiliation(s)
- Jordy Schol
- Tokai University School of Medicine, Department of Orthopedic Surgery, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Daisuke Sakai
- Tokai University School of Medicine, Department of Orthopedic Surgery, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
4
|
Li W, Zhao H, Xiong Z, Li C, Guan J, Liu T, Yang Y, Yu X. Evaluation of the Efficacy of Stem Cell Therapy in Animal Models of Intervertebral Disc Degeneration Based on Imaging Indicators: A Systematic Review and Meta-Analysis. Stem Cells Int 2022; 2022:2482653. [PMID: 36093439 PMCID: PMC9453002 DOI: 10.1155/2022/2482653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The purpose of this study is to make a systematic review of the therapeutic effect of stem cells in animal models of disc degeneration from an imaging point of view. Methods Data were extracted by searching electronic databases for RCTs that met the inclusion criteria. Data analysis was performed using RevMan 5.3 and STATA 15.1 software. This meta-analysis was registered with INPLASY, registration number INPLASY202240148. Results A total of 34 studies were included, covering four species of animals, rabbits, sheep, rats, and mice, with a total of 1163 intervertebral discs. In terms of DHI, the efficacy of stem cell group in rabbits (P < 0.001), mice (P < 0.001), sheep (P < 0.001), and rats (P = 0.001) was better than that in control group. In terms of disc height, the efficacy of stem cell group in rats (P < 0.001) was better than that in control group, while in sheep (P = 0.355), there was no statistical difference between two groups. In terms of MRI index, the efficacy of stem cell group in rats (P < 0.001), mice (P < 0.001), and rabbits (P = 0.016) was better than that in control group. In terms of MRI signal score, the efficacy of stem cell group in rabbits (P < 0.001) was better than that of control group. In terms of T2 signal intensity, stem cell group was more effective than control group in rabbits (P < 0.001), mice (P < 0.001), and rats (P = 0.003). Conclusion Stem cell therapy can improve intervertebral disc-related imaging parameters in animal models of disc degeneration, indicating that stem cell therapy has a repairing effect on intervertebral discs. However, given the heterogeneity and limitations of this study, this conclusion still needs to be tested by a large number of studies.
Collapse
Affiliation(s)
- Wenhao Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - He Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | | | - Chuanhong Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jianbin Guan
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tao Liu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yongdong Yang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xing Yu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
5
|
Friedmann A, Baertel A, Schmitt C, Ludtka C, Milosevic J, Meisel HJ, Goehre F, Schwan S. Intervertebral Disc Regeneration Injection of a Cell-Loaded Collagen Hydrogel in a Sheep Model. Int J Mol Sci 2021; 22:4248. [PMID: 33921913 PMCID: PMC8072963 DOI: 10.3390/ijms22084248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
Degenerated intervertebral discs (IVDs) were treated with autologous adipose-derived stem cells (ASC) loaded into an injectable collagen scaffold in a sheep model to investigate the implant's therapeutic potential regarding the progression of degeneration of previously damaged discs. In this study, 18 merino sheep were subjected to a 3-step minimally invasive injury and treatment model, which consisted of surgically induced disc degeneration, treatment of IVDs with an ASC-loaded collagen hydrogel 6 weeks post-operatively, and assessment of the implant's influence on degenerative tissue changes after 6 and 12 months of grazing. Autologous ASCs were extracted from subcutaneous adipose tissue and cultivated in vitro. At the end of the experiment, disc heights were determined by µ-CT measurements and morphological tissue changes were histologically examined.Histological investigations show that, after treatment with the ASC-loaded collagen hydrogel implant, degeneration-specific features were observed less frequently. Quantitative studies of the degree of degeneration did not demonstrate a significant influence on potential tissue regeneration with treatment. Regarding disc height analysis, at both 6 and 12 months after treatment with the ASC-loaded collagen hydrogel implant a stabilization of the disc height can be seen. A complete restoration of the intervertebral disc heights however could not be achieved.The reported injection procedure describes in a preclinical model a translational therapeutic approach for degenerative disc diseases based on adipose-derived stem cells in a collagen hydrogel scaffold. Further investigations are planned with the use of a different injectable scaffold material using the same test model.
Collapse
Affiliation(s)
- Andrea Friedmann
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle, Germany; (A.F.); (C.S.)
| | - Andre Baertel
- Department of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Christine Schmitt
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle, Germany; (A.F.); (C.S.)
- Department for Orthopaedics and Traumatology, Martin Luther University, Halle Wittenberg, 06120 Halle, Germany
| | - Christopher Ludtka
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | | | - Hans-Joerg Meisel
- Department of Neurosurgery, BG Klinikum Bergmannstrost, 06110 Halle, Germany; (H.-J.M.); (F.G.)
| | - Felix Goehre
- Department of Neurosurgery, BG Klinikum Bergmannstrost, 06110 Halle, Germany; (H.-J.M.); (F.G.)
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00260 Helsinki, Finland
| | - Stefan Schwan
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle, Germany; (A.F.); (C.S.)
| |
Collapse
|