1
|
Perry AC, Adesida AB. Tissue Engineering Nasal Cartilage Grafts with Three-Dimensional Printing: A Comprehensive Review. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39311456 DOI: 10.1089/ten.teb.2024.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nasal cartilage serves a crucial structural function for the nose, where rebuilding the cartilaginous framework is an essential aspect of nasal reconstruction. Conventional methods of nasal reconstruction rely on autologous cartilage harvested from patients, which contributes to donor site pain and the potential for site-specific complications. Some patients are not ideal candidates for this procedure due to a lack of adequate substitute cartilage due to age-related calcification, differences in tissue quality, or due to prior surgeries. Tissue engineering, combined with three-dimensional printing technologies, has emerged as a promising method of generating biomimetic tissues to circumvent these issues to restore normal function and aesthetics. We conducted a comprehensive literature review to examine the applications of three-dimensional printing in conjunction with tissue engineering for the generation of nasal cartilage grafts. This review aims to compare various approaches and discuss critical considerations in the design of these grafts.
Collapse
Affiliation(s)
- Alexander C Perry
- Department of Surgery, Division of Plastic Surgery, University of Alberta, Edmonton, Canada
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, University of Alberta, Edmonton, Canada
- Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Lan X, Boluk Y, Adesida AB. 3D Bioprinting of Hyaline Cartilage Using Nasal Chondrocytes. Ann Biomed Eng 2024; 52:1816-1834. [PMID: 36952145 DOI: 10.1007/s10439-023-03176-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
Due to the limited self-repair capacity of the hyaline cartilage, the repair of cartilage remains an unsolved clinical problem. Tissue engineering strategy with 3D bioprinting technique has emerged a new insight by providing patient's personalized cartilage grafts using autologous cells for hyaline cartilage repair and regeneration. In this review, we first summarized the intrinsic property of hyaline cartilage in both maxillofacial and orthopedic regions to establish the requirement for 3D bioprinting cartilage tissue. We then reviewed the literature and provided opinion pieces on the selection of bioprinters, bioink materials, and cell sources. This review aims to identify the current challenges for hyaline cartilage bioprinting and the directions for future clinical development in bioprinted hyaline cartilage.
Collapse
Affiliation(s)
- Xiaoyi Lan
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, Faculty of Medicine & Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada.
- Department of Surgery, Division of Otolaryngology, Faculty of Medicine & Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Himeles JR, Ratner D. Cartilage Tissue Engineering for Nasal Alar and Auricular Reconstruction: A Critical Review of the Literature and Implications for Practice in Dermatologic Surgery. Dermatol Surg 2023; 49:732-742. [PMID: 37184449 DOI: 10.1097/dss.0000000000003826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Reconstructing defects requiring replacement of nasal or auricular cartilage after Mohs micrographic surgery can at times be challenging. While autologous cartilage grafting is considered the mainstay for repair, it may be limited by cartilage quality/quantity, donor site availability/morbidity, and surgical complications. Tissue-engineered cartilage has recently shown promise for repairing properly selected facial defects. OBJECTIVE To (1) provide a comprehensive overview of the literature on the use of tissue-engineered cartilage for nasal alar and auricular defects, and (2) discuss this technology's advantages and future implications for dermatologic surgery. MATERIALS AND METHODS A literature search was performed using PubMed/MEDLINE and Google Scholar databases. Studies discussing nasal alar or auricular cartilage tissue engineering were included. RESULTS Twenty-seven studies were included. Using minimal donor tissue, tissue-engineered cartilage can create patient-specific, three-dimensional constructs that are biomechanically and histologically similar to human cartilage. The constructs maintain their shape and structural integrity after implantation into animal and human models. CONCLUSION Tissue-engineered cartilage may be able to replace native cartilage in reconstructing nasal alar and auricular defects given its ability to overcome several limitations of autologous cartilage grafting. Although further research is necessary, dermatologic surgeons should be aware of this innovative technique and its future implications.
Collapse
Affiliation(s)
- Jaclyn R Himeles
- All authors are affiliated with the Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | | |
Collapse
|
4
|
Chiesa-Estomba CM, Hernáez-Moya R, Rodiño C, Delgado A, Fernández-Blanco G, Aldazabal J, Paredes J, Izeta A, Aiastui A. Ex Vivo Maturation of 3D-Printed, Chondrocyte-Laden, Polycaprolactone-Based Scaffolds Prior to Transplantation Improves Engineered Cartilage Substitute Properties and Integration. Cartilage 2022; 13:105-118. [PMID: 36250422 PMCID: PMC9924975 DOI: 10.1177/19476035221127638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The surgical management of nasal septal defects due to perforations, malformations, congenital cartilage absence, traumatic defects, or tumors would benefit from availability of optimally matured septal cartilage substitutes. Here, we aimed to improve in vitro maturation of 3-dimensional (3D)-printed, cell-laden polycaprolactone (PCL)-based scaffolds and test their in vivo performance in a rabbit auricular cartilage model. DESIGN Rabbit auricular chondrocytes were isolated, cultured, and seeded on 3D-printed PCL scaffolds. The scaffolds were cultured for 21 days in vitro under standard culture media and normoxia or in prochondrogenic and hypoxia conditions, respectively. Cell-laden scaffolds (as well as acellular controls) were implanted into perichondrium pockets of New Zealand white rabbit ears (N = 5 per group) and followed up for 12 weeks. At study end point, the tissue-engineered scaffolds were extracted and tested by histological, immunohistochemical, mechanical, and biochemical assays. RESULTS Scaffolds previously matured in vitro under prochondrogenic hypoxic conditions showed superior mechanical properties as well as improved patterns of cartilage matrix deposition, chondrogenic gene expression (COL1A1, COL2A1, ACAN, SOX9, COL10A1), and proteoglycan production in vivo, compared with scaffolds cultured in standard conditions. CONCLUSIONS In vitro maturation of engineered cartilage scaffolds under prochondrogenic conditions that better mimic the in vivo environment may be beneficial to improve functional properties of the engineered grafts. The proposed maturation strategy may also be of use for other tissue-engineered constructs and may ultimately impact survival and integration of the grafts in the damaged tissue microenvironment.
Collapse
Affiliation(s)
- Carlos M. Chiesa-Estomba
- Department of Otorhinolaryngology-Head
and Neck Surgery, Osakidetza, Donostia University Hospital, San Sebastián,
Spain,Otorhinolaryngology and Head and Neck
Surgery Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Raquel Hernáez-Moya
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Claudia Rodiño
- Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| | - Alba Delgado
- Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| | - Gonzalo Fernández-Blanco
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Javier Aldazabal
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Jacobo Paredes
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Ander Izeta
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain,Tissue Engineering Group, Biodonostia
Health Research Institute, San Sebastián, Spain,Ander Izeta, Tissue Engineering Group,
Biodonostia Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San
Sebastián, Spain.
| | - Ana Aiastui
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| |
Collapse
|
5
|
Chang YY, Lee S, Jeong HJ, Cho YS, Lee SJ, Yun JH. In vivo evaluation of 3D printed polycaprolactone composite scaffold and recombinant human bone morphogenetic protein-2 for vertical bone augmentation with simultaneous implant placement on rabbit calvaria. J Biomed Mater Res B Appl Biomater 2022; 110:1103-1112. [PMID: 34874103 DOI: 10.1002/jbm.b.34984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/15/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022]
Abstract
This study evaluated 3D printed polycaprolactone (PCL) composite scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2), loaded either onto a PCL composite scaffold or implant surface, for vertical bone augmentation with implant placement. Three-dimensional printed PCL frames were filled with powdered PCL, hydroxyapatite, and β-tricalcium phosphate. RhBMP-2 was loaded to the PCL composite scaffolds and implant surfaces, and rhBMP-2 release was quantified for 21 days. Experimental implants were placed bilaterally on 20 rabbit calvaria, and the PCL composite scaffolds were vertically augmented. The randomly allocated experimental groups were divided by carrier and rhBMP-2 dosage as no rhBMP-2 (control), 5 μg rhBMP-2 loaded to PCL composite (Scaffold/rhBMP-2[5 μg]), 5 μg rhBMP-2 loaded to implant (Implant/rhBMP-2[5 μg]), 30 μg rhBMP-2 loaded to PCL composite (Scaffold/rhBMP-2[30 μg]), and 30 μg rhBMP-2 loaded to implant (Implant/rhBMP-2[30 μg]). Histologic and histometric analyses were conducted after 8 weeks. In both scaffold-loading and implant-loading, rhBMP-2 released initially rapidly, then slowly and constantly. Released rhBMP-2 totaled 23.02 ± 1.03% and 24.69 ± 1.14% in the scaffold-loaded and implant-loaded groups, respectively. There were no significant differences in histologic bone-implant contact (%). Peri-implant bone density (%) was significantly higher in the Scaffold/rhBMP-2(30 μg) and Implant/rhBMP-2(30 μg) groups. Total bone density (%) was not significantly different between the Scaffold/rhBMP-2(5 μg), Implant/rhBMP-2(5 μg), and control groups, or between the Scaffold/rhBMP-2(30 μg) and Implant/rhBMP-2(30 μg) groups, but was significantly higher in the Scaffold/rhBMP-2(30 μg) and Implant/rhBMP-2(30 μg) groups than in the controls. Three-dimensional printed PCL composite scaffold with rhBMP-2 produced vertical osteogenesis and osseointegration, regardless of rhBMP-2 loading to the PCL composite scaffold or implant surface.
Collapse
Affiliation(s)
- Yun-Young Chang
- Department of Dentistry, Inha International Medical Center, Incheon, Republic of Korea
| | - SaYa Lee
- Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hun-Jin Jeong
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, USA
| | - Young-Sam Cho
- Department of Mechanical and Design Engineering, College of Engineering, Wonkwang University, Iksan, Republic of Korea
| | - Seung-Jae Lee
- Department of Mechanical and Design Engineering, College of Engineering, Wonkwang University, Iksan, Republic of Korea
| | - Jeong-Ho Yun
- Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
6
|
Chiesa-Estomba CM, Aiastui A, González-Fernández I, Hernáez-Moya R, Rodiño C, Delgado A, Garces JP, Paredes-Puente J, Aldazabal J, Altuna X, Izeta A. Three-Dimensional Bioprinting Scaffolding for Nasal Cartilage Defects: A Systematic Review. Tissue Eng Regen Med 2021; 18:343-353. [PMID: 33864626 PMCID: PMC8169726 DOI: 10.1007/s13770-021-00331-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent years, three-dimensional (3D)-printing of tissue-engineered cartilaginous scaffolds is intended to close the surgical gap and provide bio-printed tissue designed to fit the specific geometric and functional requirements of each cartilage defect, avoiding donor site morbidity and offering a personalizing therapy. METHODS To investigate the role of 3D-bioprinting scaffolding for nasal cartilage defects repair a systematic review of the electronic databases for 3D-Bioprinting articles pertaining to nasal cartilage bio-modelling was performed. The primary focus was to investigate cellular source, type of scaffold utilization, biochemical evaluation, histological analysis, in-vitro study, in-vivo study, animal model used, length of research, and placement of experimental construct and translational investigation. RESULTS From 1011 publications, 16 studies were kept for analysis. About cellular sources described, most studies used primary chondrocyte cultures. The cartilage used for cell isolation was mostly nasal septum. The most common biomaterial used for scaffold creation was polycaprolactone alone or in combination. About mechanical evaluation, we found a high heterogeneity, making it difficult to extract any solid conclusion. Regarding biological and histological characteristics of each scaffold, we found that the expression of collagen type I, collagen Type II and other ECM components were the most common patterns evaluated through immunohistochemistry on in-vitro and in-vivo studies. Only two studies made an orthotopic placement of the scaffolds. However, in none of the studies analyzed, the scaffold was placed in a subperichondrial pocket to rigorously simulate the cartilage environment. In contrast, scaffolds were implanted in a subcutaneous plane in almost all of the studies included. CONCLUSION The role of 3D-bioprinting scaffolding for nasal cartilage defects repair is growing field. Despite the amount of information collected in the last years and the first surgical applications described recently in humans. Further investigations are needed due to the heterogeneity on mechanical evaluation parameters, the high level of heterotopic scaffold implantation and the need for quantitative histological data.
Collapse
Affiliation(s)
- Carlos M Chiesa-Estomba
- Otorhinolaryngology - Head and Neck surgery Department, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain.
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain.
| | - Ana Aiastui
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | | | - Raquel Hernáez-Moya
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| | - Claudia Rodiño
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | - Alba Delgado
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | - Juan P Garces
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Department of Pathology, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain
| | - Jacobo Paredes-Puente
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
| | - Javier Aldazabal
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
| | - Xabier Altuna
- Otorhinolaryngology - Head and Neck surgery Department, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain
| | - Ander Izeta
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| |
Collapse
|
7
|
Lim MH, Jeun JH, Kim DH, Park SH, Kim SJ, Lee WS, Hwang SH, Lim JY, Kim SW. Evaluation of Collagen Gel-Associated Human Nasal Septum-Derived Chondrocytes As a Clinically Applicable Injectable Therapeutic Agent for Cartilage Repair. Tissue Eng Regen Med 2020; 17:387-399. [PMID: 32399775 DOI: 10.1007/s13770-020-00261-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Articular cartilage injury has a poor repair ability and limited regeneration capacity with therapy based on articular chondrocytes (ACs) implantation. Here, we validated the hypothesis that human nasal septum-derived chondrocytes (hNCs) are potent therapeutic agents for clinical use in cartilage tissue engineering using an injectable hydrogel, type I collagen (COL1). METHODS We manufactured hNCs incorporated in clinical-grade soluble COL1 and investigated their clinical potential as agents in an articular defect model. RESULTS The hNCs encapsulated in COL1 (hNC-collagen) were uniformly distributed throughout the collagen and showed much greater growth rate than hACs encapsulated in collagen for the 14 days of culture. Fluorescent staining of hNC-collagen showed high expression levels of chondrocyte-specific proteins under clinical conditions. Moreover, a negative mycoplasma screening result were obtained in culture of hNC-collagen. Notably, implantation of hNC-collagen increased the repair of osteochondral defects in rats compared with implantation of collagen only. Many human cells were detected within the cartilage defects. CONCLUSION These results provide reliable evidences supporting for clinical applications of hNC-collagen in regenerative medicine for cartilage repair.
Collapse
Affiliation(s)
- Mi Hyun Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jung Ho Jeun
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sun Hwa Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seok-Jung Kim
- Department of Orthopedics, Uijeongbu St. Mary's Hospital, 271 Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Weon Sun Lee
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Seoul, Gyeonggi-do, 14647, Republic of Korea
| | - Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Seoul, Gyeonggi-do, 14647, Republic of Korea.
| | - Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|