1
|
Shashikumar U, Saraswat A, Deshmukh K, Hussain CM, Chandra P, Tsai PC, Huang PC, Chen YH, Ke LY, Lin YC, Chawla S, Ponnusamy VK. Innovative technologies for the fabrication of 3D/4D smart hydrogels and its biomedical applications - A comprehensive review. Adv Colloid Interface Sci 2024; 328:103163. [PMID: 38749384 DOI: 10.1016/j.cis.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Aditya Saraswat
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India
| | - Kalim Deshmukh
- New Technologies - Research Centre University of West Bohemia Univerzitní 2732/8, 30100, Plzeň, Czech Republic
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| |
Collapse
|
2
|
Wu J, Yun Z, Song W, Yu T, Xue W, Liu Q, Sun X. Highly oriented hydrogels for tissue regeneration: design strategies, cellular mechanisms, and biomedical applications. Theranostics 2024; 14:1982-2035. [PMID: 38505623 PMCID: PMC10945336 DOI: 10.7150/thno.89493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
Many human tissues exhibit a highly oriented architecture that confers them with distinct mechanical properties, enabling adaptation to diverse and challenging environments. Hydrogels, with their water-rich "soft and wet" structure, have emerged as promising biomimetic materials in tissue engineering for repairing and replacing damaged tissues and organs. Highly oriented hydrogels can especially emulate the structural orientation found in human tissue, exhibiting unique physiological functions and properties absent in traditional homogeneous isotropic hydrogels. The design and preparation of highly oriented hydrogels involve strategies like including hydrogels with highly oriented nanofillers, polymer-chain networks, void channels, and microfabricated structures. Understanding the specific mechanism of action of how these highly oriented hydrogels affect cell behavior and their biological applications for repairing highly oriented tissues such as the cornea, skin, skeletal muscle, tendon, ligament, cartilage, bone, blood vessels, heart, etc., requires further exploration and generalization. Therefore, this review aims to fill that gap by focusing on the design strategy of highly oriented hydrogels and their application in the field of tissue engineering. Furthermore, we provide a detailed discussion on the application of highly oriented hydrogels in various tissues and organs and the mechanisms through which highly oriented structures influence cell behavior.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Tao Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
3
|
Abstract
Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.
Collapse
Affiliation(s)
- Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Oyunchimeg Bayaraa
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Zhou Zechu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | | |
Collapse
|
4
|
Maradiaga ODH, Mok PL, Sivapragasam G, Samrot AV, Ali Khan MS, Farhana A, Alzahrani B, Tong J, Karuppiah T, Joseph NMS, Subbiah SK. Lipofection of Single Guide RNA Targeting MMP8 Decreases Proliferation and Migration in Lung Adenocarcinoma Cells. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:710. [PMID: 34356991 PMCID: PMC8306211 DOI: 10.3390/medicina57070710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
Background and Objectives: Matrix metalloproteinases (MMP) have been implicated as major determinants of tumour growth and metastasis, which are considered two of the main hallmarks of cancer. The interaction of MMP8 and other signalling molecules within and adjacent tumoral tissues, including immune cells, are rather elusive, particularly of adenocarcinoma cell type. In this study, we aimed to investigate the role of MMP8 in non-small cell lung cancer proliferation and invasiveness potential. Materials and Methods: We individually lipofected with two different single guide RNA (sgRNAs) that specifically targeted on MMP8, with CRISPR-Cas 9 protein into the cells. Results: Our results clearly indicated that the lipofection of these complexes could lead to reduced ability of A549 cells to survive and proliferate to form colonies. In addition, when compared to non-transfected cells, the experimental cell groups receiving sgRNAs demonstrated relatively decreased migration rate, hence, wider wound gaps in scratch assay. The quantitative real time-polymerase chain reaction (qRT-PCR) demonstrated significant reduction in the MAP-K, survivin and PI3-K gene expression. MMP8 might have protective roles over tumour growth and spread in our body. Conclusions: The delivery of sgRNAs targeting on the MMP8 gene could induce tumour cell death and arrest cell migratory activity.
Collapse
Affiliation(s)
- Oscar David Hernandez Maradiaga
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (O.D.H.M.); (J.T.); (N.M.S.J.)
| | - Pooi Ling Mok
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia; (A.F.); (B.A.)
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| | - Gothai Sivapragasam
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia;
| | - Mohammed Safwan Ali Khan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
- Department of Pharmacology, Hamidiye International Faculty of Medicine, University of Health Sciences, Mekteb-I, Tibbiye-I Sahane (Hamidiye) Complex Selimiye Mahallesi, Tibbiye Caddesi #38, Istanbul 34668, Turkey
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia; (A.F.); (B.A.)
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia; (A.F.); (B.A.)
| | - Jiabei Tong
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (O.D.H.M.); (J.T.); (N.M.S.J.)
| | - Thilakavathy Karuppiah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| | - Narcisse M. S. Joseph
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (O.D.H.M.); (J.T.); (N.M.S.J.)
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (O.D.H.M.); (J.T.); (N.M.S.J.)
- Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Biotechnology, Bharath Institute of Higher Education and Research, 173, Agaram Main Rd, Selaiyur, Chennai 600073, India
| |
Collapse
|
5
|
Lee NH, Bayaraa O, Zechu Z, Kim HS. Biomaterials-assisted spheroid engineering for regenerative therapy. BMB Rep 2021; 54:356-367. [PMID: 34154700 PMCID: PMC8328824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 06/15/2021] [Indexed: 04/04/2024] Open
Abstract
Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy. [BMB Reports 2021; 54(7): 356-367].
Collapse
Affiliation(s)
- Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Oyunchimeg Bayaraa
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Zhou Zechu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
6
|
Sartore L, Manferdini C, Saleh Y, Dey K, Gabusi E, Ramorino G, Zini N, Almici C, Re F, Russo D, Mariani E, Lisignoli G. Polysaccharides on gelatin-based hydrogels differently affect chondrogenic differentiation of human mesenchymal stromal cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112175. [PMID: 34082976 DOI: 10.1016/j.msec.2021.112175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 01/21/2023]
Abstract
Selection of feasible hybrid-hydrogels for best chondrogenic differentiation of human mesenchymal stromal cells (hMSCs) represents an important challenge in cartilage regeneration. In this study, three-dimensional hybrid hydrogels obtained by chemical crosslinking of poly (ethylene glycol) diglycidyl ether (PEGDGE), gelatin (G) without or with chitosan (Ch) or dextran (Dx) polysaccharides were developed. The hydrogels, namely G-PEG, G-PEG-Ch and G-PEG-Dx, were prepared with an innovative, versatile and cell-friendly technique that involves two preparation steps specifically chosen to increase the degree of crosslinking and the physical-mechanical stability of the product: a first homogeneous phase reaction followed by directional freezing, freeze-drying and post-curing. Chondrogenic differentiation of human bone marrow mesenchymal stromal cells (hBM-MSC) was tested on these hydrogels to ascertain whether the presence of different polysaccharides could favor the formation of the native cartilage structure. We demonstrated that the hydrogels exhibited an open pore porous morphology with high interconnectivity and the incorporation of Ch and Dx into the G-PEG common backbone determined a slightly reduced stiffness compared to that of G-PEG hydrogels. We demonstrated that G-PEG-Dx showed a significant increase of its anisotropic characteristic and G-PEG-Ch exhibited higher and faster stress relaxation behavior than the other hydrogels. These characteristics were associated to absence of chondrogenic differentiation on G-PEG-Dx scaffold and good chondrogenic differentiation on G-PEG and G-PEG-Ch. Furthermore, G-PEG-Ch induced the minor collagen proteins and the formation of collagen fibrils with a diameter like native cartilage. This study demonstrated that both anisotropic and stress relaxation characteristics of the hybrid hydrogels were important features directly influencing the chondrogenic differentiation potentiality of hBM-MSC.
Collapse
Affiliation(s)
- Luciana Sartore
- Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi di Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Cristina Manferdini
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Yasmin Saleh
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Kamol Dey
- Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi di Brescia, Via Branze 38, 25123 Brescia, Italy; Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong-4331, Bangladesh
| | - Elena Gabusi
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giorgio Ramorino
- Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi di Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136 Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Camillo Almici
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, P.le Spedali Civili 1, 25123 Brescia, Italy
| | - Federica Re
- Unit of Blood Disease and Bone marrow Transplantation, DPT of Clinical and Experimental Science, Brescia University and ASST Spedali Civili of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy
| | - Domenico Russo
- Unit of Blood Disease and Bone marrow Transplantation, DPT of Clinical and Experimental Science, Brescia University and ASST Spedali Civili of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy
| | - Erminia Mariani
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, via di Barbiano 1/10, 40136 Bologna, Italy; DIMEC, Alma Mater Studiorum, Università di Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
7
|
Shin J, Kang EH, Choi S, Jeon EJ, Cho JH, Kang D, Lee H, Yun IS, Cho SW. Tissue-Adhesive Chondroitin Sulfate Hydrogel for Cartilage Reconstruction. ACS Biomater Sci Eng 2021; 7:4230-4243. [PMID: 33538598 DOI: 10.1021/acsbiomaterials.0c01414] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chondroitin sulfate (CS), the main component of cartilage extracellular matrix, has attracted attention as a biomaterial for cartilage tissue engineering. However, current CS hydrogel systems still have limitations for application in successful cartilage tissue engineering owing to their unsuitable degradation kinetics, insufficient mechanical similarity, and lack of integration with the native cartilage tissue. In this study, using mussel adhesive-inspired catechol chemistry, we developed a functional CS hydrogel that exhibits tunable physical and mechanical properties as well as excellent tissue adhesion for efficient integration with native tissues. Various properties of the developed catechol-functionalized CS (CS-CA) hydrogel, including swelling, degradation, mechanical properties, and adhesiveness, could be tailored by varying the conjugation ratio of the catechol group to the CS backbone and the concentration of the CS-CA conjugates. CS-CA hydrogels exhibited significantly increased modulus (∼10 kPa) and superior adhesive properties (∼3 N) over conventional CS hydrogels (∼hundreds Pa and ∼0.05 N). In addition, CS-CA hydrogels incorporating decellularized cartilage tissue dice promoted the chondrogenic differentiation of human adipose-derived mesenchymal stem cells by providing a cartilage-like microenvironment. Finally, the transplantation of autologous cartilage dice using tissue-adhesive CS-CA hydrogels enhanced cartilage integration with host tissue and neo-cartilage formation owing to favorable physical, mechanical, and biological properties for cartilage formation. In conclusion, our study demonstrated the potential utility of the CS-CA hydrogel system in cartilage tissue reconstruction.
Collapse
Affiliation(s)
- Jisoo Shin
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun Hye Kang
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Severance Hospital, Seoul 03722, Republic of Korea
| | - Soojeong Choi
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jung Ho Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Donyoung Kang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - In Sik Yun
- Department of Plastic and Reconstructive Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.,Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Kim MJ, Lee JH, Kim JS, Kim HY, Lee HC, Byun JH, Lee JH, Kim NH, Oh SH. Intervertebral Disc Regeneration Using Stem Cell/Growth Factor-Loaded Porous Particles with a Leaf-Stacked Structure. Biomacromolecules 2020; 21:4795-4805. [PMID: 32955865 DOI: 10.1021/acs.biomac.0c00992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although biological therapies based on growth factors and transplanted cells have demonstrated some positive outcomes for intervertebral disc (IVD) regeneration, repeated injection of growth factors and cell leakage from the injection site remain considerable challenges for human therapeutic use. Herein, we prepare human bone marrow-derived mesenchymal stem cells (hBMSCs) and transforming growth factor-β3 (TGF-β3)-loaded porous particles with a unique leaf-stack structural morphology (LSS particles) as a combination bioactive delivery matrix for degenerated IVD. The LSS particles are fabricated with clinically acceptable biomaterials (polycaprolactone and tetraglycol) and procedures (simple heating and cooling). The LSS particles allow sustained release of TGF-β3 for 18 days and stable cell adhesiveness without additional modifications of the particles. On the basis of in vitro and in vivo studies, it was observed that the hBMSCs/TGF-β3-loaded LSS particles can provide a suitable milieu for chondrogenic differentiation of hBMSCs and effectively induce IVD regeneration in a beagle dog model. Thus, therapeutically loaded LSS particles offer the promise of an effective bioactive delivery system for regeneration of various tissues including IVD.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Jun-Soo Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Yong Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jae-Hoon Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Na-Hyun Kim
- Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|