1
|
Kang K, Qin X, Pan J, Zhang T, Li X, Zhuang H, Bu S. Impact of Cerium Doping on the Osteogenic Properties of a 3D Biomimetic Piezoelectric Scaffold with Sustained Mg 2+ Release. Int J Nanomedicine 2025; 20:4165-4182. [PMID: 40225221 PMCID: PMC11986669 DOI: 10.2147/ijn.s514047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
Background In the realm of bone tissue engineering, the role of biomimetic piezoelectric scaffolds made from whitlockite (WH) nanoparticles is increasingly recognized. WH, the second most abundant mineral in human bone, possesses piezoelectric properties and the capacity to release magnesium ions (Mg2+), both of which are vital for osteogenic differentiation. This study investigates the osteogenic effects of cerium (Ce) doping on three-dimensional biomimetic piezoelectric scaffolds composed of whitlockite (WH) nanoparticles. Methods WH nanoparticles with varying Ce concentrations were synthesized and scaffolds were prepared using a freeze-drying process with sodium alginate as the matrix. In vitro experiments with human bone marrow mesenchymal stem cells (hBMSCs) assessed cell proliferation and differentiation, while animal studies employed a rat calvarial defect model to evaluate new bone formation and mineralization. Results Our findings revealed that Ce doping modifies the crystallinity and electrical properties of WH nanoparticles, thereby affecting their osteogenic potential. In vitro studies indicated that scaffolds with a Ce/Ca ratio of 0.06 significantly boosted osteogenic marker expression. Furthermore, animal studies confirmed that Ce-doped WH scaffolds, especially those with the 0.06 ratio, markedly improved both new bone formation and mineralization. Conclusion The study demonstrates that Ce doping can significantly enhance the osteogenic properties of WH-based scaffolds, with the optimal Ce/Ca ratio of 0.06 being particularly effective in promoting bone formation. This research provides a promising approach for the development of advanced materials in bone tissue engineering.
Collapse
Affiliation(s)
- Kai Kang
- Department of Stomatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiyuan Qin
- Department of Stomatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jiaqi Pan
- Department of Stomatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Tianyu Zhang
- Department of Stomatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xincong Li
- Department of Stomatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Hai Zhuang
- Department of Stomatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shoushan Bu
- Department of Stomatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Nazurudeen J, Palati S, Sekaran S, Ganapathy D. Biocompatibility Evaluation of Ampicillin-Loaded Whitlockite for Bone Regeneration. Cureus 2024; 16:e61461. [PMID: 38953077 PMCID: PMC11214932 DOI: 10.7759/cureus.61461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Whitlockite (WH), a rare phosphate mineral within the apatite group, shows potential for bone regeneration owing to its superior composition and biocompatibility compared to hydroxyapatite. It can serve as a carrier for bioactive molecules, gradually releasing them to stimulate bone growth and expedite healing. This study aims to assess the biocompatibility of antibiotic-loaded WH, focusing on ampicillin, for bone regeneration applications. Methodology WH particles loaded with varying concentrations of ampicillin (10 and 25 mM) underwent biocompatibility assessments using the MTT assay. One gram of particles was incubated in 10 mL of culture medium for 24 and 48 hours. Experimental groups included control, WH, WH with ampicillin at 10 mM (WH+A10), WH with ampicillin at 25 mM (WH+A25), and positive control treated with 0.1% Triton X detergent. Subsequently, after a three-day culture period, RunX2 gene expression, indicative of osteoblastic differentiation, was quantified using real-time PCR analysis. Results Our research evaluated the bioactivity of WH particles treated with human osteoblastic cells using the MTT assay. While 10 mM ampicillin-loaded WH showed no significant difference in metabolic activity at both 24 and 48 hours, 25 mM ampicillin-loaded WH exhibited a slight reduction in metabolic activity at 24 hours, which normalized by 48 hours. Additionally, we assessed osteogenic potential and showed a significant increase in RunX2 expression with ampicillin-loaded WH, indicating sustained osteogenic properties. Conclusions Our study underscores the promising biocompatibility of WH particles by retaining their osteogenic properties even when, loaded with ampicillin, offering a potential avenue for future bone regeneration strategies.
Collapse
Affiliation(s)
- Jabeen Nazurudeen
- Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences , Saveetha University, Chennai, IND
| | - Sinduja Palati
- Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences , Saveetha University, Chennai, IND
| | - Saravanan Sekaran
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences , Saveetha University, Chennai, IND
| | - Dhanraj Ganapathy
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Kim MJ, Park JH, Seok JM, Jung J, Hwang TS, Lee HC, Lee JH, Park SA, Byun JH, Oh SH. BMP-2-immobilized PCL 3D printing scaffold with a leaf-stacked structure as a physically and biologically activated bone graft. Biofabrication 2024; 16:025014. [PMID: 38306679 DOI: 10.1088/1758-5090/ad2537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Although three-dimensional (3D) printing techniques are used to mimic macro- and micro-structures as well as multi-structural human tissues in tissue engineering, efficient target tissue regeneration requires bioactive 3D printing scaffolds. In this study, we developed a bone morphogenetic protein-2 (BMP-2)-immobilized polycaprolactone (PCL) 3D printing scaffold with leaf-stacked structure (LSS) (3D-PLSS-BMP) as a bioactive patient-tailored bone graft. The unique LSS was introduced on the strand surface of the scaffold via heating/cooling in tetraglycol without significant deterioration in physical properties. The BMP-2 adsorbed on3D-PLSS-BMPwas continuously released from LSS over a period of 32 d. The LSS can be a microtopographical cue for improved focal cell adhesion, proliferation, and osteogenic differentiation.In vitrocell culture andin vivoanimal studies demonstrated the biological (bioactive BMP-2) and physical (microrough structure) mechanisms of3D-PLSS-BMPfor accelerated bone regeneration. Thus, bioactive molecule-immobilized 3D printing scaffold with LSS represents a promising physically and biologically activated bone graft as well as an advanced tool for widespread application in clinical and research fields.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji Min Seok
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Jiwoon Jung
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tae Sung Hwang
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Su A Park
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
4
|
Raiseliene R, Linkaite G, Zarkov A, Kareiva A, Grigoraviciute I. Large-Scale Green Synthesis of Magnesium Whitlockite from Environmentally Benign Precursor. MATERIALS (BASEL, SWITZERLAND) 2024; 17:788. [PMID: 38399039 PMCID: PMC10890023 DOI: 10.3390/ma17040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Magnesium whitlockite (Mg-WH) powders were synthesized with remarkable efficiency via the dissolution-precipitation method by employing an environmentally benign precursor, gypsum. Under optimized conditions, each 5.00 g of initial gypsum yielded an impressive amount of 3.00 g (89% yield) of Mg-WH in a single batch. Remarkably, no XRD peaks attributable to impurity phases were observed, indicating the single-phase nature of the sample. FT-IR analysis confirmed the presence of the PO43- and HPO42- groups in the obtained Mg-WH phase. The SEM-EDX results confirmed that Mg-WH crystals with homogeneous Ca, Mg, P, and O distributions were obtained. In previously published research papers, the synthesis of Mg-WH has been consistently described as a highly intricate process due to material formation within a narrow pH and temperature range. Our proposed synthesis method is particularly compelling as it eliminates the need for meticulous monitoring, presenting a notable improvement in the quest for a more convenient and efficient Mg-WH synthesis. The proposed procedure not only emphasizes the effectiveness of the process, but also highlights its potential to meet significant demands, providing a reliable solution for large-scale production needs in various promising applications.
Collapse
Affiliation(s)
- Ruta Raiseliene
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Greta Linkaite
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Aivaras Kareiva
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Inga Grigoraviciute
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| |
Collapse
|
5
|
Alarçin E, Yaşayan G, Bal-Öztürk A, Cecen B. Hydrogel Biomaterial in Bone Tissue Engineering. BIOMATERIAL-BASED HYDROGELS 2024:387-427. [DOI: 10.1007/978-981-99-8826-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Zhang J, Bai H, Bai M, Wang X, Li Z, Xue H, Wang J, Cui Y, Wang H, Wang Y, Zhou R, Zhu X, Xu M, Zhao X, Liu H. Bisphosphonate-incorporated coatings for orthopedic implants functionalization. Mater Today Bio 2023; 22:100737. [PMID: 37576870 PMCID: PMC10413202 DOI: 10.1016/j.mtbio.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bisphosphonates (BPs), the stable analogs of pyrophosphate, are well-known inhibitors of osteoclastogenesis to prevent osteoporotic bone loss and improve implant osseointegration in patients suffering from osteoporosis. Compared to systemic administration, BPs-incorporated coatings enable the direct delivery of BPs to the local area, which will precisely enhance osseointegration and bone repair without the systemic side effects. However, an elaborate and comprehensive review of BP coatings of implants is lacking. Herein, the cellular level (e.g., osteoclasts, osteocytes, osteoblasts, osteoclast precursors, and bone mesenchymal stem cells) and molecular biological regulatory mechanism of BPs in regulating bone homeostasis are overviewed systematically. Moreover, the currently available methods (e.g., chemical reaction, porous carriers, and organic material films) of BP coatings construction are outlined and summarized in detail. As one of the key directions, the latest advances of BP-coated implants to enhance bone repair and osseointegration in basic experiments and clinical trials are presented and critically evaluated. Finally, the challenges and prospects of BP coatings are also purposed, and it will open a new chapter in clinical translation for BP-coated implants.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haotian Bai
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Miao Bai
- Department of Ocular Fundus Disease, Ophthalmology Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiaonan Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - ZuHao Li
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haowen Xue
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Hui Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yanbing Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rongqi Zhou
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiujie Zhu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Mingwei Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
7
|
Dayanandan AP, Cho WJ, Kang H, Bello AB, Kim BJ, Arai Y, Lee SH. Emerging nano-scale delivery systems for the treatment of osteoporosis. Biomater Res 2023; 27:68. [PMID: 37443121 DOI: 10.1186/s40824-023-00413-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
Osteoporosis is a pathological condition characterized by an accelerated bone resorption rate, resulting in decreased bone density and increased susceptibility to fractures, particularly among the elderly population. While conventional treatments for osteoporosis have shown efficacy, they are associated with certain limitations, including limited drug bioavailability, non-specific administration, and the occurrence of adverse effects. In recent years, nanoparticle-based drug delivery systems have emerged as a promising approach for managing osteoporosis. Nanoparticles possess unique physicochemical properties, such as a small size, large surface area-to-volume ratio, and tunable surface characteristics, which enable them to overcome the limitations of conventional therapies. These nanoparticles offer several advantages, including enhanced drug stability, controlled release kinetics, targeted bone tissue delivery, and improved drug bioavailability. This comprehensive review aims to provide insights into the recent advancements in nanoparticle-based therapy for osteoporosis. It elucidates the various types of nanoparticles employed in this context, including silica, polymeric, solid lipid, and metallic nanoparticles, along with their specific processing techniques and inherent properties that render them suitable as potential drug carriers for osteoporosis treatment. Furthermore, this review discusses the challenges and future suggestions associated with the development and translation of nanoparticle drug delivery systems for clinical use. These challenges encompass issues such as scalability, safety assessment, and regulatory considerations. However, despite these challenges, the utilization of nanoparticle-based drug delivery systems holds immense promise in revolutionizing the field of osteoporosis management by enabling more effective and targeted therapies, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
| | - Woong Jin Cho
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyemin Kang
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
8
|
Kizalaite A, Klimavicius V, Versockiene J, Lastauskiene E, Murauskas T, Skaudzius R, Yokoi T, Kawashita M, Goto T, Sekino T, Zarkov A. Peculiarities of the formation, structural and morphological properties of zinc whitlockite (Ca 18Zn 2(HPO 4) 2(PO 4) 12) synthesized via a phase transformation process under hydrothermal conditions. CrystEngComm 2022. [DOI: 10.1039/d2ce00497f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the present work, the formation of zinc whitlockite via a dissolution–precipitation process was investigated in detail. The influence of medium pH, reaction time, temperature and concentration of precursors on the formation of the material was studied.
Collapse
Affiliation(s)
- Agne Kizalaite
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Vytautas Klimavicius
- Institute of Chemical Physics, Vilnius University, Sauletekio 3, LT-10257, Vilnius, Lithuania
| | - Justina Versockiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - Egle Lastauskiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - Tomas Murauskas
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Ramunas Skaudzius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Taishi Yokoi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tomoyo Goto
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Sekino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|