1
|
Doyle SE, Snow F, Onofrillo C, Di Bella C, O'Connell CD, Pirogova E, Duchi S. Negative Printing for the Reinforcement of In Situ Tissue-Engineered Cartilage. Tissue Eng Part A 2025; 31:45-55. [PMID: 38517083 DOI: 10.1089/ten.tea.2023.0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
In the realm of in situ cartilage engineering, the targeted delivery of both cells and hydrogel materials to the site of a defect serves to directly stimulate chondral repair. Although the in situ application of stem cell-laden soft hydrogels to tissue defects holds great promise for cartilage regeneration, a significant challenge lies in overcoming the inherent limitation of these soft hydrogels, which must attain mechanical properties akin to the native tissue to withstand physiological loading. We therefore developed a system where a gelatin methacryloyl hydrogel laden with human adipose-derived mesenchymal stem cells is combined with a secondary structure to provide bulk mechanical reinforcement. In this study, we used the negative embodied sacrificial template 3D printing technique to generate eight different lattice-based reinforcement structures made of polycaprolactone, which ranged in porosity from 80% to 90% with stiffnesses from 28 ± 5 kPa to 2853 ± 236 kPa. The most promising of these designs, the hex prism edge, was combined with the cellular hydrogel and retained a stable stiffness over 41 days of chondrogenic differentiation. There was no significant difference between the hydrogel-only and hydrogel scaffold group in the sulfated glycosaminoglycan production (340.46 ± 13.32 µg and 338.92 ± 47.33 µg, respectively) or Type II Collagen gene expression. As such, the use of negative printing represents a promising solution for the integration of bulk reinforcement without losing the ability to produce new chondrogenic matrix.
Collapse
Affiliation(s)
- Stephanie E Doyle
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, Australia
- BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Finn Snow
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, Australia
| | - Carmine Onofrillo
- BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Claudia Di Bella
- BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia
- Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Cathal D O'Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, Australia
- BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, Australia
| | - Serena Duchi
- BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|