1
|
Song Y, Baniakina LFT, Jiang L, Chai L. Metagenomic insights into the alterations of gut microbial community in Bufo gargarizans tadpoles following lead exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101522. [PMID: 40288073 DOI: 10.1016/j.cbd.2025.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Lead (Pb), a prevalent heavy metal contaminant in aquatic environments, has complex effects on the gut microbiome function of aquatic animals. In this study, metagenomic analysis of Bufo gargarizans tadpoles was carried out following Pb exposure. Moreover, histological analysis was performed on the intestines. The results showed that Pb exposure induced histological damage to the intestinal epithelium. Significant differences in microbial abundance and function were detected in the 200 μg/L Pb group compared to the control group. Specifically, an increase in Bosea and Klebsiella was noted at 200 μg/L Pb, which potentially could induce inflammation in tadpoles. Notably, the decrease in the abundance of glycoside hydrolases subsequent to exposure to 200 μg/L Pb is likely to attenuate carbohydrate metabolism. Furthermore, increased fluoroquinolone-related antibiotic resistance genes (ARGs), phenolic-related ARGs, and iron uptake systems following 200 μg/L Pb exposure might heighten the disease risk for tadpoles. These discoveries augment our comprehension of the influences of Pb on the intestinal well-being of amphibians and offer valuable insights for further assessment of the ecological risks that Pb poses to amphibians.
Collapse
Affiliation(s)
- Yanjiao Song
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Lod Fabuleux Tresor Baniakina
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
2
|
Del Carpio AMG, Freire CA, Andrade FB, Piazza RMF, Silva RM, Carvalho E, Elias WP. Genomic Dissection of an Enteroaggregative Escherichia coli Strain Isolated from Bacteremia Reveals Insights into Its Hybrid Pathogenic Potential. Int J Mol Sci 2024; 25:9238. [PMID: 39273188 PMCID: PMC11394720 DOI: 10.3390/ijms25179238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 09/15/2024] Open
Abstract
Escherichia coli is a frequent pathogen isolated from bloodstream infections. This study aimed to characterize the genetic features of EC092, an E. coli strain isolated from bacteremia that harbors enteroaggregative E. coli (EAEC) genetic markers, indicating its hybrid pathogenic potential. Whole-genome sequencing showed that EC092 belongs to phylogroup B1, ST278, and serotype O165:H4. Genes encoding virulence factors such as fimbriae, toxins, iron-uptake systems, autotransporter proteins (Pet, Pic, Sat, and SepA), and secretion systems were detected, as well as EAEC virulence genes (aggR, aatA, aaiC, and aap). EC092 was found to be closely related to the other EAEC prototype strains and highly similar in terms of virulence to three EAEC strains isolated from diarrhea. The genomic neighborhood of pet, pic, sat, sepA, and the EAEC virulence genes of EC092 and its three genetically related fecal EAEC strains showed an identical genomic organization and nucleotide sequences. Also, EC092 produced and secreted Pet, Pic, Sat, and SepA in the culture supernatant and resisted the bactericidal activity of normal human serum. Our results demonstrate that the strain EC092, isolated from bacteremia, is a hybrid pathogenic extraintestinal E. coli (ExPEC)/EAEC with virulence features that could mediate both extraintestinal and intestinal infections.
Collapse
Affiliation(s)
| | - Claudia A Freire
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Fernanda B Andrade
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Roxane M F Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Rosa M Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil
| |
Collapse
|
3
|
Correa GB, Freire CA, Dibo M, Huerta-Cantillo J, Navarro-Garcia F, Barbosa AS, Elias WP, Moraes CTP. Plasmid-encoded toxin of Escherichia coli cleaves complement system proteins and inhibits complement-mediated lysis in vitro. Front Cell Infect Microbiol 2024; 14:1327241. [PMID: 38371299 PMCID: PMC10869522 DOI: 10.3389/fcimb.2024.1327241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
Plasmid-encoded toxin (Pet) is an autotransporter protein of the serine protease autotransporters of Enterobacteriaceae (SPATE) family, important in the pathogenicity of Escherichia coli. The pet gene was initially found in the enteroaggregative E. coli (EAEC) virulence plasmid, pAA2. Although this virulence factor was initially described in EAEC, an intestinal E. coli pathotype, pet may also be present in other pathotypes, including extraintestinal pathogenic strains (ExPEC). The complement system is an important defense mechanism of the immune system that can be activated by invading pathogens. Proteases produced by pathogenic bacteria, such as SPATEs, have proteolytic activity and can cleave components of the complement system, promoting bacterial resistance to human serum. Considering these factors, the proteolytic activity of Pet and its role in evading the complement system were investigated. Proteolytic assays were performed by incubating purified components of the complement system with Pet and Pet S260I (a catalytic site mutant) proteins. Pet, but not Pet S260I, could cleave C3, C5 and C9 components, and also inhibited the natural formation of C9 polymers. Furthermore, a dose-dependent inhibition of ZnCl2-induced C9 polymerization in vitro was observed. E. coli DH5α survived incubation with human serum pre-treated with Pet. Therefore, Pet can potentially interfere with the alternative and the terminal pathways of the complement system. In addition, by cleaving C9, Pet may inhibit membrane attack complex (MAC) formation on the bacterial outer membrane. Thus, our data are suggestive of a role of Pet in resistance of E. coli to human serum.
Collapse
Affiliation(s)
| | | | - Miriam Dibo
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Jazmin Huerta-Cantillo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
4
|
Patjas A, Kantele A. International travel and travelers' diarrhea - Increased risk of urinary tract infection. Travel Med Infect Dis 2022; 48:102331. [PMID: 35447322 DOI: 10.1016/j.tmaid.2022.102331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Urinary tract infections (UTIs) rank among the most common infections encountered in health care, with an annual incidence of 12% for women. Despite the vast numbers of international travels (over 1.5 billion annually), no prospective studies have had primary focus on UTIs during travel. METHODS We recruited in 2008-17 international travelers who all filled out pre- and post-travel questionnaires. Incidence rates of UTI were calculated separately for both sexes. Multivariable analyses were conducted to identify risk factors for UTI during travel. RESULTS In total 15/517 (2,9%) travelers acquired UTI during travel, yielding an annual incidence of 62% for female and 18% for male travelers. Travelers' diarrhea (TD) was identified as a factor predisposing to UTI (OR 9.2, 95% CI 1.5-+∞, p = 0.011); all UTI cases were recorded by travelers with TD. CONCLUSIONS To our knowledge, this is the first prospective study with a primary focus on UTI during travel. Our data reveal that among travelers the incidence of UTI far exceeds that reported for the general population. TD was identified as a major risk factor for the infection. Our results highlight the need for TD prevention as a means of also preventing UTI during travel.
Collapse
Affiliation(s)
- Anu Patjas
- Meilahti Infectious Diseases and Vaccine Research Center, MeiVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, P.O. Box 700, FI-00029, HUS, Helsinki, Finland; Human Microbiome Research Unit, University of Helsinki, Finland; Travel Clinic, Aava Medical Center, Annankatu 32, FI-00100, Helsinki, Finland; Center of Excellence in Antimicrobial Resistance Research, University of Helsinki, Finland
| | - Anu Kantele
- Meilahti Infectious Diseases and Vaccine Research Center, MeiVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, P.O. Box 700, FI-00029, HUS, Helsinki, Finland; Human Microbiome Research Unit, University of Helsinki, Finland; Travel Clinic, Aava Medical Center, Annankatu 32, FI-00100, Helsinki, Finland; Center of Excellence in Antimicrobial Resistance Research, University of Helsinki, Finland.
| |
Collapse
|
5
|
Tanabe RHS, Dias RCB, Orsi H, de Lira DRP, Vieira MA, dos Santos LF, Ferreira AM, Rall VLM, Mondelli AL, Gomes TAT, Camargo CH, Hernandes RT. Characterization of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) E. coli. Microorganisms 2022; 10:microorganisms10030645. [PMID: 35336220 PMCID: PMC8950336 DOI: 10.3390/microorganisms10030645] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Pathogenic Escherichia coli are divided into two groups: diarrheagenic (DEC) and extraintestinal pathogenic (ExPEC) E. coli. ExPEC causing urinary tract infections (UTIs) are termed uropathogenic E. coli (UPEC) and are the most common cause of UTIs worldwide. (2) Methods: Here, we characterized 112 UPEC in terms of phylogroup, serotype, the presence of virulence factor-encoding genes, and antimicrobial resistance. (3) Results: The majority of the isolates were assigned into the phylogroup B2 (41.07%), and the serogroups O6 (12.5%) and O25 (8.9%) were the most frequent. Five hybrid UPEC (4.5%), with markers from two DEC pathotypes, i.e., atypical enteropathogenic (aEPEC) and enteroaggregative (EAEC) E. coli, were identified, and designated UPEC/aEPEC (one isolate) and UPEC/EAEC (four isolates), respectively. Three UPEC/EAEC harbored genes from the pap operon, and the UPEC/aEPEC carried ibeA. The highest resistance rates were observed for ampicillin (46.4%) and trimethoprim/sulfamethoxazole (34.8%), while 99.1% of the isolates were susceptible to nitrofurantoin and/or fosfomycin. Moreover, 9.8% of the isolates were identified as Extended Spectrum β-Lactamase producers, including one hybrid UPEC/EAEC. (4) Conclusion: Our data reinforce that hybrid UPEC/DEC are circulating in the city of Botucatu, Brazil, as uropathogens. However, how and whether these combinations of genes influence their pathogenicity is a question that remains to be elucidated.
Collapse
Affiliation(s)
- Rodrigo H. S. Tanabe
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Regiane C. B. Dias
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Henrique Orsi
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Daiany R. P. de Lira
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Melissa A. Vieira
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Luís F. dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo 01246-902, SP, Brazil; (L.F.d.S.); (C.H.C.)
| | - Adriano M. Ferreira
- Hospital das Clínicas da Faculdade de Medicina de Botucatu, Botucatu 18607-741, SP, Brazil;
| | - Vera L. M. Rall
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Alessandro L. Mondelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Estadual Paulista (UNESP), Botucatu 18618-970, SP, Brazil;
| | - Tânia A. T. Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP-EPM), São Paulo 04023-062, SP, Brazil;
| | - Carlos H. Camargo
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo 01246-902, SP, Brazil; (L.F.d.S.); (C.H.C.)
| | - Rodrigo T. Hernandes
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
- Correspondence: ; Tel.: +55-14-3880-0446
| |
Collapse
|
6
|
Schüroff PA, Salvador FA, Abe CM, Wami HT, Carvalho E, Hernandes RT, Dobrindt U, Gomes TAT, Elias WP. The aggregate-forming pili (AFP) mediates the aggregative adherence of a hybrid-pathogenic Escherichia coli (UPEC/EAEC) isolated from a urinary tract infection. Virulence 2021; 12:3073-3093. [PMID: 34923895 PMCID: PMC8923075 DOI: 10.1080/21505594.2021.2007645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) comprises an important diarrheagenic pathotype, while uropathogenic E. coli (UPEC) is the most important agent of urinary tract infection (UTI). Recently, EAEC virulence factors have been detected in E. coli strains causing UTI, showing the importance of these hybrid-pathogenic strains. Previously, we detected an E. coli strain isolated from UTI (UPEC-46) presenting characteristics of EAEC, e.g., the aggregative adherence (AA) pattern and EAEC-associated genes (aatA, aap, and pet). In this current study, we analyzed the whole genomic sequence of UPEC-46 and characterized some phenotypic traits. The AA phenotype was observed in cell lineages of urinary and intestinal origin. The production of curli, cellulose, bacteriocins, and Pet toxin was detected. Additionally, UPEC-46 was not capable of forming biofilm using different culture media and human urine. The genome sequence analysis showed that this strain belongs to serotype O166:H12, ST10, and phylogroup A, harbors the tet, aadA, and dfrA/sul resistance genes, and is phylogenetically more related to EAEC strains isolated from human feces. UPEC-46 harbors three plasmids. Plasmid p46-1 (~135 kb) carries some EAEC marker genes and those encoding the aggregate-forming pili (AFP) and its regulator (afpR). A mutation in afpA (encoding the AFP major pilin) led to the loss of pilin production and assembly, and notably, a strongly reduced adhesion to epithelial cells. In summary, the genetic background and phenotypic traits analyzed suggest that UPEC-46 is a hybrid strain (UPEC/EAEC) and highlights the importance of AFP adhesin in the adherence to colorectal and bladder cell lines.
Collapse
Affiliation(s)
- Paulo A Schüroff
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil.,Institute of Hygiene, University of Münster, Münster, Germany
| | - Fábia A Salvador
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cecilia M Abe
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Haleluya T Wami
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Rodrigo T Hernandes
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
7
|
Martínez-Santos VI, Ruíz-Rosas M, Ramirez-Peralta A, Zaragoza García O, Resendiz-Reyes LA, Romero-Pineda OJ, Castro-Alarcón N. Enteroaggregative Escherichia coli is associated with antibiotic resistance and urinary tract infection symptomatology. PeerJ 2021; 9:e11726. [PMID: 34513321 PMCID: PMC8395569 DOI: 10.7717/peerj.11726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Background Uropathogenic Escherichia coli (UPEC) is the causative agent of uncomplicated urinary tract infections (UTIs) in ambulatory patients. However, enteroaggregative E. coli (EAEC), an emergent bacterial pathogen that causes persistent diarrhoea, has recently been associated with UTIs. The aim of this study was to determine the frequency of EAEC virulence genes, antibiotic resistance, as well as biofilm production of UPEC isolates obtained from ambulatory patients with non-complicated UTIs that attended to the ISSSTE clinic in Chilpancingo, Guerrero, Mexico, and correlate these with the patients' urinary tract infection symptomatology. Methods One hundred clinical isolates were obtained. The identification of clinical isolates, antimicrobial susceptibility testing, and extended spectrum beta-lactamases (ESBLs) production were performed using the Vitek automated system. Assignment of E. coli phylogenetic groups was performed using the quadruplex phylo-group assignment PCR assay. UPEC virulence genes (hlyA, fimH, papC, iutA, and cnf1) and EAEC virulence genes (aap, aggR, and aatA) were detected by multiple PCR. Results We found that 22% of the isolates carried the aggR gene and were classified as UPEC/EAEC. The main phylogenetic group was B2 (44.1% were UPEC and 77.27% UPEC/EAEC isolates, respectively). Over half of the UPEC/EAEC isolates (63.64%) were obtained from symptomatic patients, however the aatA gene was the only one found to be associated with the risk of developing pyelonephritis (OR = 5.15, p = 0.038). A total of 77.71% of the UPEC/EAEC isolates were ESBL producers and 90.91% multidrug-resistant (MDR). In conclusion, UPEC/EAEC isolates are more frequent in symptomatic patients and the aatA gene was associated with a higher risk of developing pyelonephritis, along with UPEC genes hlyA and cfn1. UPEC/EAEC isolates obtained from UTI showed ESBL production and MDR.
Collapse
Affiliation(s)
| | - María Ruíz-Rosas
- Laboratorio Clínico, Área Microbiología, Clínica Hospital ISSSTE Chilpancingo, Chilpancingo, Guerrero, México
| | - Arturo Ramirez-Peralta
- Laboratorio de Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Oscar Zaragoza García
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Luis Armando Resendiz-Reyes
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Obed Josimar Romero-Pineda
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Natividad Castro-Alarcón
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| |
Collapse
|
8
|
The frequency of hybrid Enteroaggregative/Uropathogenic Escherichia coli isolated from clinical samples of Isfahan hospitals, Iran. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Makarova MA, Kaftyreva LA. Genetic diversity of enteroaggregative Escherichia coli. Klin Lab Diagn 2021; 65:707-711. [PMID: 33301661 DOI: 10.18821/0869-2084-2020-65-11-707-711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studied 74 E. coli strains isolated from stool samples (60) and urine samples (14) of patients examined for clinical indications. Molecular methods included: PCR with electrophoretic detection of genes associated with diarrheal E. coli pathogroup EAgEC (aggR, aaf, aap, aatA, pet, ast, aai) and ExPEC pathogroup UPEC (pap, sfa, afa, kpsMT II, iutA, hlyA, cnf), MLST typing, whole genome sequencing. Strains isolated from stool samples were significantly more likely (88.3%, p > 0.05) to be typical EAgECaggR+ compared to atypical EAgECaggR-. Strains isolated from urine samples, significant differences between typical and atypical EAgEC were not detected (p > 0.05). Genes associated with ExPEC were present in all strains isolated from urine samples and in 45 strains (75%) isolated from stool samples. Coproisolates belonged to 10 serogroups and 13 serovars: O3:H2, O11:H10, O16:H48, O51:H30, O55:H21, O73:H18, O73:H33, O86:H2, O86:H10, O92:H33, O140:H2, O159:H10. Two strains had unique nucleotide sequences of genes encoding O-antigens that were missing from the SerotypeFinder database. 80% of EAgEC isolated from feces and urine was characterized by an enteroaggregative/uropathogenic genotype (EAgEC/UPEC). Most of the strains isolated from urine belonged to the virulent clone of high-risk epidemic spread ST 38 associated with hybrid strains of UPEC / EAgEC.
Collapse
Affiliation(s)
- M A Makarova
- Saint-Petersburg Pasteur Institute.,North-Western State Medical University named after I.I. Mechnikov, the medical microbiology department
| | - L A Kaftyreva
- Saint-Petersburg Pasteur Institute.,North-Western State Medical University named after I.I. Mechnikov, the medical microbiology department
| |
Collapse
|
10
|
Abdelwahab R, Yasir M, Godfrey RE, Christie GS, Element SJ, Saville F, Hassan EA, Ahmed EH, Abu-Faddan NH, Daef EA, Busby SJW, Browning DF. Antimicrobial resistance and gene regulation in Enteroaggregative Escherichia coli from Egyptian children with diarrhoea: Similarities and differences. Virulence 2020; 12:57-74. [PMID: 33372849 PMCID: PMC7781526 DOI: 10.1080/21505594.2020.1859852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a common diarrhoeagenic human pathogen, isolated from patients in both developing and industrialized countries, that is becoming increasingly resistant to many frontline antibiotics. In this study, we screened 50 E. coli strains from children presenting with diarrhea at the outpatients clinic of Assiut University Children’s Hospital, Egypt. We show that all of these isolates were resistant to multiple classes of antibiotics and identified two as being typical EAEC strains. Using whole genome sequencing, we determined that both isolates carried, amongst others, blaCTX-M and blaTEM antibiotic resistance genes, as well as many classical EAEC virulence determinants, including the transcriptional regulator, AggR. We demonstrate that the expression of these virulence determinants is dependent on AggR, including aar, which encodes for a repressor of AggR, Aar. Since biofilm formation is the hallmark of EAEC infection, we examined the effect of Aar overexpression on both biofilm formation and AggR-dependent gene expression. We show that whilst Aar has a minimal effect on AggR-dependent transcription it is able to completely disrupt biofilm formation, suggesting that Aar affects these two processes differently. Taken together, our results suggest a model for the induction of virulence gene expression in EAEC that may explain the ubiquity of EAEC in both sick and healthy individuals.
Collapse
Affiliation(s)
- Radwa Abdelwahab
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK.,Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Muhammad Yasir
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK.,Quadram Institute Bioscience, Norwich Research Park , Norwich, UK
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | - Gabrielle S Christie
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | - Sarah J Element
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | - Faye Saville
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | | | | | | | - Enas A Daef
- Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| |
Collapse
|
11
|
Genome-based characterization of Escherichia coli causing bloodstream infection through next-generation sequencing. PLoS One 2020; 15:e0244358. [PMID: 33362261 PMCID: PMC7757869 DOI: 10.1371/journal.pone.0244358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/09/2020] [Indexed: 12/02/2022] Open
Abstract
Escherichia coli are one of the commonest bacteria causing bloodstream infection (BSI). The aim of the research was to identify the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance of E. coli isolated from bloodstream infection hospitalized patients in Cipto Mangunkusumo National Hospital Jakarta. We used whole genome sequencing methods rather than the conventional one, to characterized the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance (AMR) of E. coli. The composition of E. coli sequence types (ST) was as follows: ST131 (n = 5), ST38 (n = 3), ST405 (n = 3), ST69 (n = 3), and other STs (ST1057, ST127, ST167, ST3033, ST349, ST40, ST58, ST6630). Enteroaggregative E. coli (EAEC) and Extra-intestinal pathogenic E. coli (ExPEC) groups were found dominant in our samples. Twenty isolates carried virulence genes for host cells adherence and 15 for genes that encourage E. coli immune evasion by enhancing survival in serum. ESBL-genes were present in 17 E. coli isolates. Other AMR genes also encoded resistance against aminoglycosides, quinolones, chloramphenicol, macrolides and trimethoprim. The phylogeny analysis showed that phylogroup D is dominated and followed by phylogroup B2. The E. coli isolated from 22 patients in Cipto Mangunkusumo National Hospital Jakarta showed high diversity in serotypes, sequence types, virulence genes, and AMR genes. Based on this finding, routinely screening all bacterial isolates in health care facilities can improve clinical significance. By using Whole Genome Sequencing for laboratory-based surveillance can be a valuable early warning system for emerging pathogens and resistance mechanisms.
Collapse
|
12
|
Moraes CTP, Longo J, Silva LB, Pimenta DC, Carvalho E, Morone MSLC, da Rós N, Serrano SMT, Santos ACM, Piazza RMF, Barbosa AS, Elias WP. Surface Protein Dispersin of Enteroaggregative Escherichia coli Binds Plasminogen That Is Converted Into Active Plasmin. Front Microbiol 2020; 11:1222. [PMID: 32625178 PMCID: PMC7315649 DOI: 10.3389/fmicb.2020.01222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/14/2020] [Indexed: 01/24/2023] Open
Abstract
Dispersin is a 10.2 kDa-immunogenic protein secreted by enteroaggregative Escherichia coli (EAEC). In the prototypical EAEC strain 042, dispersin is non-covalently bound to the outer membrane, assisting dispersion across the intestinal mucosa by overcoming electrostatic attraction between the AAF/II fimbriae and the bacterial surface. Also, dispersin facilitates penetration of the intestinal mucus layer. Initially characterized in EAEC, dispersin has been detected in other E. coli pathotypes, including those isolated from extraintestinal sites. In this study we investigated the binding capacity of purified dispersin to extracellular matrix (ECM), since dispersin is exposed on the bacterial surface and is involved in intestinal colonization. Binding to plasminogen was also investigated due to the presence of conserved carboxy-terminal lysine residues in dispersin sequences, which are involved in plasminogen binding in several bacterial proteins. Moreover, some E. coli components can interact with this host protease, as well as with tissue plasminogen activator, leading to plasmin production. Recombinant dispersin was produced and used in binding assays with ECM molecules and coagulation cascade compounds. Purified dispersin bound specifically to laminin and plasminogen. Interaction with plasminogen occurred in a dose-dependent and saturable manner. In the presence of plasminogen activator, bound plasminogen was converted into plasmin, its active form, leading to fibrinogen and vitronectin cleavage. A collection of E. coli strains isolated from human bacteremia was screened for the presence of aap, the dispersin-encoding gene. Eight aap-positive strains were detected and dispersin production could be observed in four of them. Our data describe new attributes for dispersin and points out to possible roles in mechanisms of tissue adhesion and dissemination, considering the binding capacity to laminin, and the generation of dispersin-bound plasmin(ogen), which may facilitate E. coli spread from the colonization site to other tissues and organs. The cleavage of fibrinogen in the bloodstream, may also contribute to the pathogenesis of sepsis caused by dispersin-producing E. coli.
Collapse
Affiliation(s)
| | - Jonathan Longo
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Ludmila B Silva
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Daniel C Pimenta
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, Brazil
| | - Eneas Carvalho
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Mariana S L C Morone
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Nancy da Rós
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Ana Carolina M Santos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Angela S Barbosa
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Waldir P Elias
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
13
|
Dutra IL, Araújo LG, Assunção RG, Lima YA, Nascimento JR, Vale AAM, Alves PCS, Trovão LO, Santos ACM, Silva RM, Silva LA, Maciel MCG, de Sousa EM, Elias WP, Nascimento FRF, Abreu AG. Pic-Producing Escherichia coli Induces High Production of Proinflammatory Mediators by the Host Leading to Death by Sepsis. Int J Mol Sci 2020; 21:ijms21062068. [PMID: 32197297 PMCID: PMC7139334 DOI: 10.3390/ijms21062068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/30/2022] Open
Abstract
Escherichia coli is an important pathogen responsible for a variety of diseases. We have recently shown that Pic, a serine protease secreted by E. coli, mediates immune evasion by the direct cleavage of complement molecules. The aim of this study was to investigate the action of a Pic-producing bacteria in a murine model of sepsis. Mice were infected with Pic-producing E. coli (F5) or F5∆pic mutant. Animal survival was monitored for five days, and a subset of mice was euthanized after 12 h for sample acquisition. The inoculation of Pic-producing bacteria induced 100% death within 24 h. The colony forming units count in the organs was significantly higher in F5. Hematological analysis showed a decrease of total leukocytes. Nitric oxide and cytokines were detected in serum, as well as on peritoneal lavage of the F5 group in higher levels than those detected in the other groups. In addition, immunophenotyping showed a decrease of activated lymphocytes and macrophages in the F5 group. Therefore, Pic represents an important virulence factor, allowing the survival of the bacterium in the bloodstream and several organs, as well as inducing a high production of proinflammatory mediators by the host, and concomitantly a cellular immunosuppression, leading to sepsis and death.
Collapse
Affiliation(s)
- Itaynara L. Dutra
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.L.D.); (L.G.A.); (R.G.A.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
| | - Lorena G. Araújo
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.L.D.); (L.G.A.); (R.G.A.)
- Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Raissa G. Assunção
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.L.D.); (L.G.A.); (R.G.A.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
| | - Yago A. Lima
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - Johnny R. Nascimento
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - André A. M. Vale
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - Patrícia C. S. Alves
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - Liana O. Trovão
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - Ana Carolina M. Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (A.C.M.S.); (R.M.S.)
| | - Rosa M. Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (A.C.M.S.); (R.M.S.)
| | - Lucilene A. Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - Márcia C. G. Maciel
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70878-040, Brazil
| | - Eduardo M. de Sousa
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Flávia R. F. Nascimento
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - Afonso G. Abreu
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.L.D.); (L.G.A.); (R.G.A.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
- Correspondence:
| |
Collapse
|
14
|
Antibiotic resistance and virulence patterns of pathogenic Escherichia coli strains associated with acute gastroenteritis among children in Qatar. BMC Microbiol 2020; 20:54. [PMID: 32143566 PMCID: PMC7060563 DOI: 10.1186/s12866-020-01732-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/21/2020] [Indexed: 12/29/2022] Open
Abstract
Background The treatment of Enterobacteriaceae family including diarrheagenic E. coli (DEC) has been increasingly complicated due to the emergence of resistant strains. Here we report on the phenotypic resistance profiles and ESBL genotype and virulence profiles of Enteroaggregative E. coli (EAEC) and Enteropathogenic E. coli (EPEC) isolated from children hospitalized with acute gastroenteritis in Qatar (AGE). Results E. coli were isolated and characterized from 76 diarrheagenic stool positive samples, collected from hospitalized children less than 10 years old. Isolates were tested for antibiotic susceptibility against eighteen clinically relevant antibiotics using E-test method. Conventional PCR was performed to detect genes encoding ESBL and virulence factors. Chi-square test was performed to compare the individual antibiotic resistance between EPEC and EAEC. A significant percentage (73.7%) of isolates were resistant to at least one antibiotic. Overall, high resistance (70%) was reported to the first-line antibiotics such as ampicillin, tetracycline (46.4%), and sulfamethoxazole-trimethoprim (42.9%). Further, 39.5% of the isolates were multidrug resistant (MDR), with 22.4% being ESBL producers. On the other hand, all isolates were susceptible to carbapenem, fosfomycin, amikacin and colistin. The incidences of resistance to the 18 antibiotics between EPEC and EAEC were not significantly different by Pearson chi -square test (P > 0.05). Genetic analysis revealed that 88.23% of ESBL production was blaCTX-M-G1 (blaCTX-M-15, blaCTX-M-3) - encoded. Several different combinations of virulence markers were observed, however, there was no specific trend among the isolates apart from absence of the bundle-forming pilus (bfpA) gene, which encodes the type IV fimbriae in EPEC adherence factor (EAF) plasmid (pEAF), among all EPEC (atypical). 15% of the EAEC strains were positive for a combination of astA, aap & capU, while 10% were positive for three different combinations. The aap, aatA, capU and aggR virulence genes showed the highest frequency of 65, 60, 55 and 55% respectively. Others genes, east, astA, and aai, showed frequencies of 35, 30 and 20% respectively. Conclusions Atypical EPEC and EAEC were the primary etiological agents of diarrhea in children among DEC pathotypes. Our results indicated high rate of antimicrobial resistance pattern of DEC strains, which necessities the development of regulatory programs and reporting systems of antimicrobial resistance in DEC and other AGE-associated bacteria to insure effective control of diarrheal diseases. Results from this study demand a further research on identifying the phenotypic and genotypic profiles of more DEC pathotypes in various clinical samples.
Collapse
|
15
|
Freire CA, Santos ACM, Pignatari AC, Silva RM, Elias WP. Serine protease autotransporters of Enterobacteriaceae (SPATEs) are largely distributed among Escherichia coli isolated from the bloodstream. Braz J Microbiol 2020; 51:447-454. [PMID: 31965549 DOI: 10.1007/s42770-020-00224-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/07/2020] [Indexed: 12/29/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is the major cause of Gram-negative-related sepsis. Bacterial survival in the bloodstream is mediated by a variety of virulence traits, including those mediating immune system evasion. Serine protease autotransporters of Enterobacteriaceae (SPATE) constitute a superfamily of virulence factors that can cause tissue damage and cleavage of molecules of the complement system, which is a key feature for the establishment of infection in the bloodstream. In this study, we analyzed 278 E. coli strains isolated from human bacteremia from inpatients of both genders, different ages, and clinical conditions. These strains were screened for the presence of SPATE-encoding genes as well as for phylogenetic classification and intrinsic virulence of ExPEC. SPATE-encoding genes were detected in 61.2% of the strains and most of these strains (44.6%) presented distinct SPATE-encoding gene profiles. sat was the most frequent gene among the entire collection, found in 34.2%, followed by vat (28.4%), pic (8.3%), and tsh (4.7%). Although in low frequencies, espC (0.7%), eatA (1.1%), and espI (1.1%) were detected and are being reported for the first time in extraintestinal isolates. The presence of SPATE-encoding genes was positively associated to phylogroup B2 and intrinsic virulent strains. These findings suggest that SPATEs are highly prevalent and involved in diverse steps of the pathogenesis of bacteremia caused by E. coli.
Collapse
Affiliation(s)
- Claudia A Freire
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brazil 1500, São Paulo, SP, 05503-900, Brazil
| | - Ana Carolina M Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Antonio C Pignatari
- Laboratório Especial de Microbiologia Clínica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rosa M Silva
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brazil 1500, São Paulo, SP, 05503-900, Brazil.
| |
Collapse
|
16
|
Yasir M, Icke C, Abdelwahab R, Haycocks JR, Godfrey RE, Sazinas P, Pallen MJ, Henderson IR, Busby SJW, Browning DF. Organization and architecture of AggR-dependent promoters from enteroaggregative Escherichia coli. Mol Microbiol 2018; 111:534-551. [PMID: 30485564 PMCID: PMC6392122 DOI: 10.1111/mmi.14172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 11/27/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC), is a diarrhoeagenic human pathogen commonly isolated from patients in both developing and industrialized countries. Pathogenic EAEC strains possess many virulence determinants, which are thought to be involved in causing disease, though, the exact mechanism by which EAEC causes diarrhoea is unclear. Typical EAEC strains possess the transcriptional regulator, AggR, which controls the expression of many virulence determinants, including the attachment adherence fimbriae (AAF) that are necessary for adherence to human gut epithelial cells. Here, using RNA‐sequencing, we have investigated the AggR regulon from EAEC strain 042 and show that AggR regulates the transcription of genes on both the bacterial chromosome and the large virulence plasmid, pAA2. Due to the importance of fimbriae, we focused on the two AAF/II fimbrial gene clusters in EAEC 042 (afaB‐aafCB and aafDA) and identified the promoter elements and AggR‐binding sites required for fimbrial expression. In addition, we examined the organization of the fimbrial operon promoters from other important EAEC strains to understand the rules of AggR‐dependent activation. Finally, we generated a series of semi‐synthetic promoters to define the minimal sequence required for AggR‐mediated activation and show that the correct positioning of a single AggR‐binding site is sufficient to confer AggR‐dependence.
Collapse
Affiliation(s)
- Muhammad Yasir
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Christopher Icke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Radwa Abdelwahab
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Faculty of Medicine, Assiut University, Assiut, Egypt
| | - James R Haycocks
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Pavelas Sazinas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Ian R Henderson
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
17
|
Nunes KO, Santos ACP, Bando SY, Silva RM, Gomes TAT, Elias WP. Enteroaggregative Escherichia coli with uropathogenic characteristics are present in feces of diarrheic and healthy children. Pathog Dis 2018; 75:4111144. [PMID: 28961708 DOI: 10.1093/femspd/ftx106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/09/2017] [Indexed: 11/14/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) has been recently associated with urinary tract infections (UTI). Since EAEC are found in feces of both diarrheic and asymptomatic individuals, their presence in the intestine may be a source of UTI. In this study, we detected in feces of diarrheic and healthy children a subset of EAEC strains with genetic markers of extraintestinal pathogenic E. coli (ExPEC). MLST grouped these EAEC with ExPEC markers in three main clusters along with prototypes strains of EAEC, uropathogenic E. coli and UTI-causing EAEC. Interestingly, the latter cluster was composed by EAEC with ExPEC markers belonging to phylogroup A and closely related to the uropathogenic EAEC O78:H10 strain. Such attributes suggest that these strains have uropathogenic abilities. Therefore, intestinal carriers of these strains are potentially in risk to develop UTIs.
Collapse
Affiliation(s)
- Kamila O Nunes
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP-05503-900, Brazil
| | - Adriana C P Santos
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP-05503-900, Brazil
| | - Silvia Y Bando
- Departamento de Pediatria, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP- 05403-000, Brazil
| | - Rosa M Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP- 04023-062, Brazil
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP- 04023-062, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP-05503-900, Brazil
| |
Collapse
|
18
|
Adler Sørensen C, Rosbjerg A, Hebbelstrup Jensen B, Krogfelt KA, Garred P. The Lectin Complement Pathway Is Involved in Protection Against Enteroaggregative Escherichia coli Infection. Front Immunol 2018; 9:1153. [PMID: 29896194 PMCID: PMC5986924 DOI: 10.3389/fimmu.2018.01153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) causes acute and persistent diarrhea worldwide. Still, the involvement of host factors in EAEC infections is unresolved. Binding of recognition molecules from the lectin pathway of complement to EAEC strains have been observed, but the importance is not known. Our aim was to uncover the involvement of these molecules in innate complement dependent immune protection toward EAEC. Binding of mannose-binding lectin, ficolin-1, -2, and -3 to four prototypic EAEC strains, and ficolin-2 binding to 56 clinical EAEC isolates were screened by a consumption-based ELISA method. Flow cytometry was used to determine deposition of C4b, C3b, and the bactericidal C5b-9 membrane attack complex (MAC) on the bacteria in combination with different complement inhibitors. In addition, the direct serum bactericidal effect was assessed. Screening of the prototypic EAEC strains revealed that ficolin-2 was the major binder among the lectin pathway recognition molecules. However, among the clinical EAEC isolates only a restricted number (n = 5) of the isolates bound ficolin-2. Using the ficolin-2 binding isolate C322-17 as a model, we found that incubation with normal human serum led to deposition of C4b, C3b, and to MAC formation. No inhibition of complement deposition was observed when a C1q inhibitor was added, while partial inhibition was observed when ficolin-2 or factor D inhibitors were used separately. Combining the inhibitors against ficolin-2 and factor D led to virtually complete inhibition of complement deposition and protection against direct bacterial killing. These results demonstrate that ficolin-2 may play an important role in innate immune protection against EAEC when an appropriate ligand is exposed, but many EAEC strains evade lectin pathway recognition and may, therefore, circumvent this strategy of innate host immune protection.
Collapse
Affiliation(s)
- Camilla Adler Sørensen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Nüesch-Inderbinen MT, Baschera M, Zurfluh K, Hächler H, Nüesch H, Stephan R. Clonal Diversity, Virulence Potential and Antimicrobial Resistance of Escherichia coli Causing Community Acquired Urinary Tract Infection in Switzerland. Front Microbiol 2017; 8:2334. [PMID: 29250044 PMCID: PMC5716990 DOI: 10.3389/fmicb.2017.02334] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022] Open
Abstract
Objectives: The aim of this study was to assess the clonal structure, virulence potential and antibiotic susceptibility of uropathogenic Escherichia coli (UPEC) isolates causing community acquired urinary tract infection (CAUTI) in unselected primary care patients in Switzerland. Methods: We performed multilocus sequence typing, virulence factor determination, and phenotypic and genotypic antimicrobial resistance testing on 44 non-duplicate UPEC isolates. Results: Twenty-seven different sequence types (STs) were identified. Major UPEC clones were represented by 19 (43.2%) of the isolates, including E. coli ST131, ST69 (both 13.6%), ST73 (6.8%), ST10 (4.5%), ST127, ST140, (both 2.3%). Five (11.4%) isolates belonged to ST141. Aggregate virulence factor (VF) scores were highest among isolates belonging to ST127 and ST141. Overall, 50% of the isolates were susceptible to all 12 antimicrobials tested, and all isolates remained susceptible to fosfomycin and nitrofurantoin. Resistance to sulfamethoxazole and ciprofloxacin were found in 31.8, and 15.9% of the isolates, respectively. Plasmid-mediated resistance genes were detected in ST69 and ST131 and included aac(6')-Ib-cr (2.3% of all isolates) blaCTX-M-14 and blaCTX-M-15 (9%), and mph(A) (13.6%). None of the isolates tested positive for mcr-1 or mcr-2. Conclusions: Our results show that CAUTI in Switzerland is caused by a wide variety of UPEC STs for which fosfomycin remains a good treatment option. We suggest that ST141 is an emerging clone associated with UTI in the community, and warrants closer attention. Moreover, the high rate of E. coli harboring mph(A) from patients without a history of antimicrobial therapy or hospitalization indicates that UPEC is an important reservoir for mph(A).
Collapse
Affiliation(s)
- Magdalena T. Nüesch-Inderbinen
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Melinda Baschera
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Katrin Zurfluh
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Herbert Hächler
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Hansjakob Nüesch
- Practice for General and Internal Medicine, Seuzach, Switzerland
| | - Roger Stephan
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Riveros M, García W, García C, Durand D, Mercado E, Ruiz J, Ochoa TJ. Molecular and Phenotypic Characterization of Diarrheagenic Escherichia coli Strains Isolated from Bacteremic Children. Am J Trop Med Hyg 2017; 97:1329-1336. [PMID: 29016293 DOI: 10.4269/ajtmh.17-0066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Escherichia coli is an important cause of Gram-negative bacteremia. The aim of this study was to characterize at the molecular and phenotypic levels E. coli strains belonging to different diarrheagenic pathotypes [diarrheagenic E. coli (DEC)] isolated from bacteremia in children younger than 5 years of age. Seventy bacteremia E. coli strains were collected in a prospective study in 12 hospitals in Lima, Peru. The presence of virulence genes associated with DEC [enterotoxigenic (lt and st), enteropathogenic (eaeA), shiga toxin-producing (stx1and stx2), enteroinvasive (ipaH), enteroaggregative (aggR), and diffusely adherent (daaD)] was determined by multiplex real-time polymerase chain reaction (PCR). Those positive E. coli strains were further analyzed for 18 additional virulence factors encoding genes and others phenotypic features. Virulence genes associated with DEC were identified in seven bacteremic children (10%), including: one aggR-positive [enteroaggregative E. coli (EAEC)], one eaeA-positive [enteropathogenic E. coli (EPEC)], one st-positive [enterotoxigenic E. coli (ETEC)], one daaD-positive [diffusely adherent E. coli (DAEC)], and three strain positive for aggR and daaD (EAEC/DAEC) at the same time. All strains, except EPEC, had the Ag43 adhesin, and all, except ETEC had the siderophore gene fyuA. The phylogenetic profile of these strains was variable, two (B2), two (D), two (A), and one (B1) strain. These isolates were susceptible to all tested antibacterial agents except to ampicillin and gentamicin. The three EAEC/DAEC strains showed biofilm formation and aggregative adhesion and had the same repetitive extragenic palindromic-PCR patterns. These findings suggest that some DEC strains, especially agg-R and daa-D positive, might cause bacteremia in children.
Collapse
Affiliation(s)
- Maribel Riveros
- Universidad Nacional Federico Villarreal, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Wilfredo García
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Coralith García
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - David Durand
- Universidad Nacional Federico Villarreal, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erik Mercado
- Universidad Nacional Federico Villarreal, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Theresa J Ochoa
- University of Texas Health Science Center at Houston, School of Public Health, Houston, Texas.,Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
21
|
Chao AW, Bhatti M, DuPont HL, Nataro JP, Carlin LG, Okhuysen PC. Clinical features and molecular epidemiology of diarrheagenic Escherichia coli pathotypes identified by fecal gastrointestinal multiplex nucleic acid amplification in patients with cancer and diarrhea. Diagn Microbiol Infect Dis 2017; 89:235-240. [PMID: 28931467 DOI: 10.1016/j.diagmicrobio.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/06/2017] [Indexed: 01/29/2023]
Abstract
Diarrheagenic Escherichia coli (DEC) pathotypes with differing epidemiology and clinical features, are known causes of disease with worldwide occurrence. At a major cancer center in the U.S., we studied patients with cancer and diarrhea for whom a GI Biofire FilmArray multiplex GI panel (BFM) was performed. An enteropathogen was identified in 382 of 2017 (19%) samples distributed across 311 patients. Of these, 60/311(19%) were positive for DEC. Patients receiving hematopoietic stem cell transplants (HSCT) 29/60 (48%) or with a hematologic malignancy 17/60 (28%) accounted for the majority of DEC cases. Enteropathogenic E. coli (EPEC, n=35 [58%]), enteroaggregative E. coli (EAEC, n=10 [17%]) and Shiga toxin producing E. coli (STEC, n=3 [5%]) were the most common DEC identified and peaked in the summer months. Stool cultures confirmed infections in 6/10 (60%) EAEC (five typical AggR+), and EPEC was recovered in 8/35 (22%) samples (all atypical eaeA+, bfp-). DEC was identified in 22 cases (37%) that developed diarrhea >48hours after admission suggesting health care acquisition. Chronic infections were found in 2 EPEC and 1 EAEC cases that were tested at 1month or beyond with shedding that ranged from 58 to >125days. Two patients that underwent hematopoietic stem cell transplantation carried EAEC strains resistant to multiple antibiotics including fluoroquinolones and expressed extended spectrum beta lactamases. While in some instances BFM results were not verified in culture and could represent false positives, DEC pathotypes, especially EPEC and EAEC, caused chronic infections with antimicrobial-resistant strains in a subset of immunosuppressed cancer patients.
Collapse
Affiliation(s)
- Andrew W Chao
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX; Section of Infectious Diseases, Baylor College of Medicine, Houston, TX
| | - Micah Bhatti
- Department of Laboratory Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Herbert L DuPont
- Section of Infectious Diseases, Baylor College of Medicine, Houston, TX; Department of Epidemiology, Human Genetics and Environmental Health, The University of Texas School of Public Health, Houston, TX
| | - James P Nataro
- Department of Pediatrics, The University of Virginia School of medicine, Charlottesville, VA
| | - Lily G Carlin
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Pablo C Okhuysen
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX; Section of Infectious Diseases, Baylor College of Medicine, Houston, TX; Department of Epidemiology, Human Genetics and Environmental Health, The University of Texas School of Public Health, Houston, TX.
| |
Collapse
|
22
|
Li L, Wang H, Cheng H, Deng Z. Isomaltulose production by yeast surface display of sucrose isomerase from Pantoea dispersa on Yarrowia lipolytica. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Evaluation of a new real-time PCR assay for the direct detection of diarrheagenic Escherichia coli in stool specimens. Diagn Microbiol Infect Dis 2017; 88:12-16. [DOI: 10.1016/j.diagmicrobio.2017.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/20/2017] [Accepted: 01/28/2017] [Indexed: 12/17/2022]
|
24
|
Abreu AG, Barbosa AS. How Escherichia coli Circumvent Complement-Mediated Killing. Front Immunol 2017; 8:452. [PMID: 28473832 PMCID: PMC5397495 DOI: 10.3389/fimmu.2017.00452] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022] Open
Abstract
Complement is a crucial arm of the innate immune response against invading bacterial pathogens, and one of its main functions is to recognize and destroy target cells. Similar to other pathogens, Escherichia coli has evolved mechanisms to overcome complement activation. It is well known that capsular polysaccharide may confer resistance to complement-mediated killing and phagocytosis, being one of the strategies adopted by this bacterium to survive in serum. In addition, proteases produced by E. coli have been shown to downregulate the complement system. Pic, an autotransporter secreted by different pathogens in the Enterobacteriaceae family, is able to cleave C2, C3/C3b, and C4/C4b and works synergistically with human Factor I and Factor H (FH), thereby promoting inactivation of C3b. Extracellular serine protease P, a serine protease of enterohemorrhagic E. coli (EHEC), downregulates complement activation by cleaving C3/C3b and C5. StcE, a metalloprotease secreted by EHEC, inhibits the classical complement-mediated cell lysis by potentiating the action of C1 inhibitor, and the periplasmic protease Prc contributes to E. coli complement evasion by interfering with the classical pathway activation and by preventing membrane attack complex deposition. Finally, it has been described that E. coli proteins interact with negative complement regulators to modulate complement activation. The functional consequences resulting from the interaction of outer membrane protein A, new lipoprotein I, outer membrane protein W, and Stx2 with proteins of the FH family and C4b-binding protein (C4BP) are discussed in detail. In brief, in this review, we focused on the different mechanisms used by pathogenic E. coli to circumvent complement attack, allowing these bacteria to promote a successful infection.
Collapse
Affiliation(s)
- Afonso G Abreu
- Programa de Pós-Graduação em Biologia Parasitária, CEUMA University, São Luís, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Federal University of Maranhão, São Luís, Brazil
| | - Angela S Barbosa
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
25
|
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1:3-30. [PMID: 27866935 PMCID: PMC5156508 DOI: 10.1016/j.bjm.2016.10.015] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.
Collapse
Affiliation(s)
- Tânia A T Gomes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil.
| | - Waldir P Elias
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Isabel C A Scaletsky
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Beatriz E C Guth
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Juliana F Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Luís C S Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Marina B Martinez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, São Paulo, SP, Brazil
| |
Collapse
|
26
|
Guzman-Hernandez R, Contreras-Rodriguez A, Hernandez-Velez R, Perez-Martinez I, Lopez-Merino A, Zaidi MB, Estrada-Garcia T. Mexican unpasteurised fresh cheeses are contaminated with Salmonella spp., non-O157 Shiga toxin producing Escherichia coli and potential uropathogenic E. coli strains: A public health risk. Int J Food Microbiol 2016; 237:10-16. [DOI: 10.1016/j.ijfoodmicro.2016.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/01/2022]
|
27
|
Li N, Wang H, Li L, Cheng H, Liu D, Cheng H, Deng Z. Integrated Approach To Producing High-Purity Trehalose from Maltose by the Yeast Yarrowia lipolytica Displaying Trehalose Synthase (TreS) on the Cell Surface. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6179-6187. [PMID: 27472444 DOI: 10.1021/acs.jafc.6b02175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An alternative strategy that integrated enzyme production, trehalose biotransformation, and bioremoval in one bioreactor was developed in this study, thus simplifying the traditional procedures used for trehalose production. The trehalose synthase gene from a thermophilic archaea, Picrophilus torridus, was first fused to the YlPir1 anchor gene and then inserted into the genome of Yarrowia lipolytica, thus yielding an engineered yeast strain. The trehalose yield reached 73% under optimal conditions. The thermal and pH stabilities of the displayed enzyme were improved compared to those of its free form purified from recombinant Escherichia coli. After biotransformation, the glucose byproduct and residual maltose were directly fermented to ethanol by a Saccharomyces cerevisiae strain. Ethanol can be separated by distillation, and high-purity trehalose can easily be obtained from the fermentation broth. The results show that this one-pot procedure is an efficient approach to the economical production of trehalose from maltose.
Collapse
Affiliation(s)
| | - Hengwei Wang
- Innovation & Application Institute (IAI), Zhejiang Ocean University , Zhoushan 316022, China
| | | | | | | | | | | |
Collapse
|
28
|
Gupta D, Sharma M, Sarkar S, Thapa BR, Chakraborti A. Virulence determinants in enteroaggregative Escherichia coli from North India and their interaction in in vitro organ culture system. FEMS Microbiol Lett 2016; 363:fnw189. [PMID: 27493010 DOI: 10.1093/femsle/fnw189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important diarrhoeal pathogen causing diseases in multiple epidemiological and clinical settings. In developing countries like India, diarrhoeal diseases are one of the major killers among paediatric population and oddly, few studies are available from Indian paediatric population on the variability of EAEC virulence genes. In this study, we examined the distribution of plasmid and chromosomal-encoded virulence determinants in EAEC isolates, and analysed cytokines response generated against EAEC with specific aggregative adherence fimbriae (AAF) type in duodenal biopsies using in vitro organ culture (IVOC) mimicking in vivo conditions. Different virulence marker combinations among strains were reflected as a function of specific adhesins signifying EAEC heterogeneity. fis gene emerged as an important genetic marker apart from aggA and aap Further, EAEC infection in IVOC showed upregulation of IL-8, IL-1β, IL-6, TNF-α and TLR-5 expression. EAEC with AAFII induced significant TLR-5 and IL-8 response, conceivably owing to more pathogenicity markers. This study sheds light on the pattern of EAEC pathotypes prevalent in North Indian paediatric population and highlights the presence of unique virulence combinations in pathogenic strains. Thus, evident diversity in EAEC virulence and multifaceted bacteria-host crosstalk can provide useful insights for the strategic management of diarrhoeal diseases in India, where diarrhoeal outbreaks are more frequent.
Collapse
Affiliation(s)
- Deepika Gupta
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Monica Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Subendu Sarkar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - B R Thapa
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Anuradha Chakraborti
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
29
|
Kessler R, Nisa S, Hazen TH, Horneman A, Amoroso A, Rasko DA, Donnenberg MS. Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic Escherichia coli strain with enteropathogenic E. coli genes. Pathog Dis 2015; 73:ftv076. [PMID: 26410828 PMCID: PMC4622172 DOI: 10.1093/femspd/ftv076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
A 55-year-old man with well-controlled HIV had severe diarrhea for 3 weeks and developed multiorgan dysfunction and bacteremia due to Escherichia coli. The genome of the patient's isolate had features characteristic of extraintestinal pathogenic E. coli and genes distantly related to those defining enteropathogenic E. coli.
Collapse
Affiliation(s)
- Robert Kessler
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shahista Nisa
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tracy H Hazen
- The Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Amy Horneman
- Pathology and Laboratory Service, University of Maryland School of Medicine, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Anthony Amoroso
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David A Rasko
- The Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael S Donnenberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
30
|
Current perspectivesin pathogenesis and antimicrobial resistance of enteroaggregative Escherichia coli. Microb Pathog 2015; 85:44-9. [PMID: 26057827 DOI: 10.1016/j.micpath.2015.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 02/08/2023]
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen that causes acute and persistent diarrhea in children and adults. While the pathogenic mechanisms of EAEC intestinal colonization have been uncovered (including bacterial adhesion, enterotoxin and cytotoxin secretion, and stimulation of mucosal inflammation), those of severe extraintestinal infections remain largely unknown. The recent emergence of multidrug resistant EAEC represents an alarming public health threat and clinical challenge, and research on the molecular mechanisms of resistance is urgently needed.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Colonization of the host epithelia by pathogenic Escherichia coli is influenced by the ability of the bacteria to interact with host surfaces. Because the initial step of an E. coli infection is to adhere, invade, and persist within host cells, some strategies used by intestinal and extraintestinal E. coli to infect host cell are presented. RECENT FINDINGS This review highlights recent progress understanding how extraintestinal pathogenic E. coli strains express specific adhesins or invasins that allow colonization of the urinary tract or the meninges, while intestinal E. coli strains are able to colonize different regions of the intestinal tract using other specialized adhesins or invasins. Finally, evaluation of different diets and environmental conditions regulating the colonization of these pathogens is discussed. SUMMARY Discovery of new interactions between pathogenic E. coli and the host epithelial cells unravels the need for more mechanistic studies that can provide new clues regarding how to combat these infections.
Collapse
|
32
|
Epidemiology and clinical manifestations of enteroaggregative Escherichia coli. Clin Microbiol Rev 2015; 27:614-30. [PMID: 24982324 DOI: 10.1128/cmr.00112-13] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) represents a heterogeneous group of E. coli strains. The pathogenicity and clinical relevance of these bacteria are still controversial. In this review, we describe the clinical significance of EAEC regarding patterns of infection in humans, transmission, reservoirs, and symptoms. Manifestations associated with EAEC infection include watery diarrhea, mucoid diarrhea, low-grade fever, nausea, tenesmus, and borborygmi. In early studies, EAEC was considered to be an opportunistic pathogen associated with diarrhea in HIV patients and in malnourished children in developing countries. In recent studies, associations with traveler's diarrhea, the occurrence of diarrhea cases in industrialized countries, and outbreaks of diarrhea in Europe and Asia have been reported. In the spring of 2011, a large outbreak of hemolytic-uremic syndrome (HUS) and hemorrhagic colitis occurred in Germany due to an EAEC O104:H4 strain, causing 54 deaths and 855 cases of HUS. This strain produces the potent Shiga toxin along with the aggregative fimbriae. An outbreak of urinary tract infection associated with EAEC in Copenhagen, Denmark, occurred in 1991; this involved extensive production of biofilm, an important characteristic of the pathogenicity of EAEC. However, the heterogeneity of EAEC continues to complicate diagnostics and also our understanding of pathogenicity.
Collapse
|
33
|
The Serine Protease Pic From Enteroaggregative Escherichia coli Mediates Immune Evasion by the Direct Cleavage of Complement Proteins. J Infect Dis 2015; 212:106-15. [DOI: 10.1093/infdis/jiv013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/22/2014] [Indexed: 01/18/2023] Open
|