1
|
da Silva Junior AG, Frias IAM, Lima-Neto RG, Sá SR, Oliveira MDL, Andrade CAS. Concanavalin A differentiates gram-positive bacteria through hierarchized nanostructured transducer. Microbiol Res 2021; 251:126834. [PMID: 34364021 DOI: 10.1016/j.micres.2021.126834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
Biosensors are pre-prepared diagnostic devices composed of at least one biological probe. These devices are envisaged for the practical identification of specific targets of microbiological interest. In recent years, the use of narrow-specific probes such as lectins has been proven to distinguish bacteria and glycoproteins based on their superficial glycomic pattern. For instance, Concanavalin A is a carbohydrate-binding lectin indicated as a narrow-specific biological probe for Gram-negative bacteria. As a drawback, Gram-positive bacteria are frequently overlooked from lectin-based biosensing studies because their identification results in low resolution and overlapped signals. In this work, the authors explore the effect that platform nanostructuration has over the electrochemical response of ConA-based platforms constructed for bacterial detection; one is formed of chitosan-capped magnetic nanoparticles, and another is composed of gold nanoparticle-decorated magnetic nanoparticles. The biosensing platforms were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) as a function of bacterial concentration. Our results show that probe-target interaction causes variations in the electrical responses of nanostructured transducers. Moreover, the association of gold nanoparticles to magnetic nanoparticles resulted in an electrical enhancement capable of overcoming low resolution and overlapping Gram-positive identification. Both platforms attained a limit of detection of 10 ° CFU mL-1, which is useful for water analyses and sanitation concerns, where low CFU mL-1 are always expected. Although both platforms were able to detect Gram-negative bacteria, Gram-positives were only correctly differentiated by the gold nanoparticle-decorated magnetic nanoparticles, thus demonstrating the positive influence of hierarchically nanostructured platforms.
Collapse
Affiliation(s)
- Alberto G da Silva Junior
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Isaac A M Frias
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Reginaldo G Lima-Neto
- Centro de Ciências da Saúde, Departamento de Medicina Tropical, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Sandra R Sá
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - César A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| |
Collapse
|
2
|
Zischka M, Künne CT, Blom J, Wobser D, Sakιnç T, Schmidt-Hohagen K, Dabrowski PW, Nitsche A, Hübner J, Hain T, Chakraborty T, Linke B, Goesmann A, Voget S, Daniel R, Schomburg D, Hauck R, Hafez HM, Tielen P, Jahn D, Solheim M, Sadowy E, Larsen J, Jensen LB, Ruiz-Garbajosa P, Quiñones Pérez D, Mikalsen T, Bender J, Steglich M, Nübel U, Witte W, Werner G. Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40. BMC Genomics 2015; 16:175. [PMID: 25887115 PMCID: PMC4374294 DOI: 10.1186/s12864-015-1367-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/20/2015] [Indexed: 11/28/2022] Open
Abstract
Background Enterococcus faecalis is a multifaceted microorganism known to act as a beneficial intestinal commensal bacterium. It is also a dreaded nosocomial pathogen causing life-threatening infections in hospitalised patients. Isolates of a distinct MLST type ST40 represent the most frequent strain type of this species, distributed worldwide and originating from various sources (animal, human, environmental) and different conditions (colonisation/infection). Since enterococci are known to be highly recombinogenic we determined to analyse the microevolution and niche adaptation of this highly distributed clonal type. Results We compared a set of 42 ST40 isolates by assessing key molecular determinants, performing whole genome sequencing (WGS) and a number of phenotypic assays including resistance profiling, formation of biofilm and utilisation of carbon sources. We generated the first circular closed reference genome of an E. faecalis isolate D32 of animal origin and compared it with the genomes of other reference strains. D32 was used as a template for detailed WGS comparisons of high-quality draft genomes of 14 ST40 isolates. Genomic and phylogenetic analyses suggest a high level of similarity regarding the core genome, also demonstrated by similar carbon utilisation patterns. Distribution of known and putative virulence-associated genes did not differentiate between ST40 strains from a commensal and clinical background or an animal or human source. Further analyses of mobile genetic elements (MGE) revealed genomic diversity owed to: (1) a modularly structured pathogenicity island; (2) a site-specifically integrated and previously unknown genomic island of 138 kb in two strains putatively involved in exopolysaccharide synthesis; and (3) isolate-specific plasmid and phage patterns. Moreover, we used different cell-biological and animal experiments to compare the isolate D32 with a closely related ST40 endocarditis isolate whose draft genome sequence was also generated. D32 generally showed a greater capacity of adherence to human cell lines and an increased pathogenic potential in various animal models in combination with an even faster growth in vivo (not in vitro). Conclusion Molecular, genomic and phenotypic analysis of representative isolates of a major clone of E. faecalis MLST ST40 revealed new insights into the microbiology of a commensal bacterium which can turn into a conditional pathogen. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1367-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie Zischka
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, D-38855, Wernigerode, Germany. .,Present address: Institute for Pathology, Hannover Medical School (MHH), Hannover, Germany.
| | - Carsten T Künne
- Functional Genomics of Bacterial Pathogens, Institute for Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany. .,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Jochen Blom
- Center for Biotechnology (CeBiTec)/University of Bielefeld, Bielefeld, Germany. .,Institute for Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany.
| | - Dominique Wobser
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | - Türkân Sakιnç
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | - Kerstin Schmidt-Hohagen
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany.
| | - P Wojtek Dabrowski
- Robert Koch Institute, ZBS 1 Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Berlin, Germany.
| | - Andreas Nitsche
- Robert Koch Institute, ZBS 1 Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Berlin, Germany.
| | - Johannes Hübner
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Freiburg, Germany. .,Division of Pediatric Infectious Diseases, Hauner Children's Hospital, Ludwig-Maximilians University Munich, Munich, Germany.
| | - Torsten Hain
- Functional Genomics of Bacterial Pathogens, Institute for Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany.
| | - Trinad Chakraborty
- Functional Genomics of Bacterial Pathogens, Institute for Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany.
| | - Burkhard Linke
- Center for Biotechnology (CeBiTec)/University of Bielefeld, Bielefeld, Germany. .,Institute for Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany.
| | - Alexander Goesmann
- Center for Biotechnology (CeBiTec)/University of Bielefeld, Bielefeld, Germany. .,Institute for Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany.
| | - Sonja Voget
- Goettingen Genomics Laboratory, Georg August University, Goettingen, Germany.
| | - Rolf Daniel
- Goettingen Genomics Laboratory, Georg August University, Goettingen, Germany.
| | - Dietmar Schomburg
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany.
| | - Rüdiger Hauck
- Department of Veterinary Medicine, Institute for Poultry Diseases, Free University Berlin, Berlin, Germany.
| | - Hafez M Hafez
- Department of Veterinary Medicine, Institute for Poultry Diseases, Free University Berlin, Berlin, Germany.
| | - Petra Tielen
- Institute for Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
| | - Dieter Jahn
- Institute for Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
| | - Margrete Solheim
- Laboratory of Microbial Gene Technology and Food Microbiology, The Norwegian University of Life Sciences, Ås, Norway.
| | - Ewa Sadowy
- National Medicines Institute, Warsaw, Poland.
| | | | - Lars B Jensen
- Division of Microbiology, National Food Institute, Danish Technical University, Copenhagen, Denmark.
| | | | - Dianelys Quiñones Pérez
- Instituto de Medicina Tropical Pedro Kourí, Servicio de Bacteriología-Micología, La Habana, Cuba.
| | - Theresa Mikalsen
- Department of Medical Biology, Faculty of Health Sciences, Research Group for Host Microbe Interactions, University of Tromsø, Tromsø, Norway.
| | - Jennifer Bender
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, D-38855, Wernigerode, Germany.
| | - Matthias Steglich
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, D-38855, Wernigerode, Germany.
| | - Ulrich Nübel
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, D-38855, Wernigerode, Germany. .,Leibniz-Institut DSMZ - Deutsche Sammlung von Mikrorganismen und Zellkulturen GmbH, Braunschweig, Germany.
| | - Wolfgang Witte
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, D-38855, Wernigerode, Germany.
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, D-38855, Wernigerode, Germany.
| |
Collapse
|
3
|
Rossmann FS, Kropec A, Laverde D, Saaverda FR, Wobser D, Huebner J. In vitro and in vivo activity of hyperimmune globulin preparations against multiresistant nosocomial pathogens. Infection 2014; 43:169-75. [PMID: 25428225 PMCID: PMC4382538 DOI: 10.1007/s15010-014-0706-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
Abstract
Purpose We compared different immunoglobulin preparations containing IgG (Intraglobin/Intratect) or a mixture of IgG, IgA, and IgM (Pentaglobin) to assess the opsonic and protective efficacy of human immunoglobulin preparations against multiresistent nosocomial pathogens. Materials and methods Clinical isolates of E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Enterococcus faecium, and Staphylococcus aureus were tested by opsonophagocytic assay using immunologobulin preparations at dilutions usually obtained in patients. The target antigens of opsonic antibodies were characterized by opsonophagocytic inhibition assays, and the protective efficacy in vivo was tested in a mouse bacteremia model as previously described. Results All strains were killed to at least 50 % by Pentaglobin. One P. aeruginosa strain was not efficiently killed by Intraglobin (23 %) but the other strains were killed by Intraglobin to a similar degree compared to Pentaglobin. Opsonic IgG antibodies against E. faecalis were directed against LTA, while opsonic antibodies in Pentaglobin were primarily directed against other cell wall carbohydrates. In a mouse bacteremia model, Pentaglobin was more protective than Intratect against Staphylococcus aureus, while Intratect reduced colony counts better than normal rabbit serum or saline. Conclusions All tested human immunoglobulin preparations contain opsonic and protective antibodies against targets present on multiresistant Gram-positive and Gram-negative bacteria. Enrichment of these preparations with IgM increases the protective efficacy against some strains, probably due to antibodies directed against cell wall carbohydrates.
Collapse
Affiliation(s)
- F. S. Rossmann
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg University, Freiburg im Breisgau, Germany
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians University, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
| | - A. Kropec
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Freiburg im Breisgau, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
| | - D. Laverde
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Freiburg im Breisgau, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
| | - F. R. Saaverda
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Freiburg im Breisgau, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
| | - D. Wobser
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Freiburg im Breisgau, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
| | - J. Huebner
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Freiburg im Breisgau, Germany
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians University, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
| |
Collapse
|