1
|
Ioannou P, Kofteridis DP. Editorial for the Special Issue "Healthcare-Associated Infections and Antimicrobial Therapy". Microorganisms 2025; 13:920. [PMID: 40284756 PMCID: PMC12029962 DOI: 10.3390/microorganisms13040920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Hospital-acquired infections occur frequently among hospitalized patients and are associated with a significant increase in morbidity and mortality [...].
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, PC 71003 Heraklion, Greece
- Internal Medicine Department, University Hospital of Heraklion, PC 71110 Heraklion, Greece
| | - Diamantis P. Kofteridis
- School of Medicine, University of Crete, PC 71003 Heraklion, Greece
- Internal Medicine Department, University Hospital of Heraklion, PC 71110 Heraklion, Greece
| |
Collapse
|
2
|
Xu Y, Peng M, Zhou T, Yang Y, Xu P, Xie T, Cao X, Chen B, Ouyang J. Diagnostic performance of metagenomic next-generation sequencing among hematological malignancy patients with bloodstream infections after antimicrobial therapy. J Infect 2025; 90:106395. [PMID: 39733825 DOI: 10.1016/j.jinf.2024.106395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/02/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Metagenomic next-generation sequencing (mNGS) is an effective method for detecting pathogenic pathogens of bloodstream infection (BSI). However, there is no consensus on whether the use of antibiotics affects the diagnostic performance of mNGS. We conducted a prospective clinical study aiming to evaluate the effect of antimicrobial treatment on mNGS. METHODS Blood samples were collected for mNGS testing within 24 h of culture-confirmed with BSI, with re-examination conducted every 2-3 days. RESULTS A total of 38 patients with BSI were enrolled. The mNGS positive (mNGS-pos) rate declined sharply after the use of antibiotics, with only 17 (44.78%) patients remaining mNGS-pos while the rest were mNGS negative (mNGS-neg). The median duration of pathogen identification was significantly longer for mNGS compared to blood culture (BC) (4 days vs 1 days; P < 0.0001). A positivity duration of ≥ 3 days was an independent risk factor of septic shock (OR, 20.671; 95% CI, 1.958-218.190; P = 0.012). Patients with mNGS-pos and mNGS-neg differed by the median duration of fever (6 days vs 3 days; P = 0.038), rates of drug resistance (35.3% vs 4.8%; P = 0.017), rates of septic shock (47.1% vs 14.3%; P = 0.029), and 28-day mortality (29.4% vs 4.8%; P = 0.041). CONCLUSIONS The antimicrobial treatment will greatly reduce the positive rate of mNGS. The duration of mNGS is significantly longer than that of BC. The prolonged duration of mNGS suggests an increased risk of septic shock and could be identified as a high-risk factor of adverse infection outcome, requiring more aggressive anti-infective treatment measures.
Collapse
Affiliation(s)
- Yueyi Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Miaoxin Peng
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Tong Zhou
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Yonggong Yang
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Ting Xie
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Xuefang Cao
- Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang 310000, PR China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, PR China.
| | - Jian Ouyang
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, PR China.
| |
Collapse
|
3
|
Kamoshida G, Yamada N, Yamaguchi D, Yahiro K, Morita Y. Colistin Resistance in Acinetobacter baumannii: Basic and Clinical Insights. Biol Pharm Bull 2025; 48:213-221. [PMID: 40024691 DOI: 10.1248/bpb.b23-00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The emergence of drug-resistant bacteria has posed a significant problem in medical institutions worldwide. Colistin, which targets lipopolysaccharide (LPS), serves as a last-resort antimicrobial agent against multidrug-resistant Gram-negative bacteria. Nevertheless, Acinetobacter baumannii, a pathogen with a worldwide prevalence of antimicrobial resistance, has been reported to develop resistance to colistin frequently. In this review, we discuss how A. baumannii acquires resistance to colistin, focusing on modification as well as loss of LPS present in its outer membrane, which is the primary mechanism of A. baumannii's resistance to colistin. Basic and clinical insights regarding colistin resistance in A. baumannii have been discussed in isolation. Therefore, we discuss the relationship between these 2 colistin resistance mechanisms in terms of the frequency and fitness of genetic mutations based on the insights from basic studies and clinical settings. We concluded that understanding the detailed mechanisms of colistin drug resistance requires a comprehensive understanding of both the frequency of mutations and the effects of selection pressure. Finally, we highlight the importance of promoting research from both basic science and clinical perspectives.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
- Laboratory of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, 5 Misasagi-nakauchi-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Noriteru Yamada
- Laboratory of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, 5 Misasagi-nakauchi-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Daiki Yamaguchi
- Laboratory of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, 5 Misasagi-nakauchi-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, 5 Misasagi-nakauchi-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
4
|
Chen J, Li G, Shao Y, Cheng Z, Wan F, Wu D, Wei D, Liu P, Du F, Liu Y. Clinical, phenotypic characterization and genomic analysis of the mucoid Acinetobacter baumannii from a teaching hospital. Microb Pathog 2024; 196:106929. [PMID: 39270758 DOI: 10.1016/j.micpath.2024.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Acinetobacter baumannii (A. baumannii) has become a significant nosocomial pathogen globally over the past decade due to the increasing prevalence of antibiotic-resistant isolates. The formation of the mucoid phenotype is a crucial adaptive defense response to external pressure, but the clinical, phenotypic and genotypic characteristics and their relationship with sequence types (ST) and K locus (KL) types remain unclear. METHODS In this study, we screened a total of 736 A. baumannii isolates, from which we identified and characterized 13 mucoid isolates. The study explored the clinical characteristics of patients with mucoid isolates, investigated the mucoid phenotype, performed capsule observation, quantified capsule production, and assessed antimicrobial susceptibility. Subsequently, whole-genome sequencing (WGS) was used to analyze the sequence types (ST), loci for capsular polysaccharide (KL), antibiotic resistance genes, virulence genes, and core-genome single-nucleotide polymorphisms (SNPs). Additionally, the virulence of all mucoid strains was evaluated through serum resistance assay, biofilm-forming assay, and Galleria mellonella survival assay. RESULTS All mucoid A. baumannii isolates were found to be encapsulated and extremely drug-resistant. Among patients infected with these isolates, 92.3 % had pulmonary infections, and the 30-day mortality rate was 61.5 %. The analysis revealed that not all strains are highly virulent. Whole-genome sequencing (WGS) identified the sequence types as ST136, ST208, ST381, ST195, and ST281, and the capsular types as KL77, KL7, KL33, KL2, and KL3. The ST208 and KL7 isolates exhibited higher virulence and greater biofilm formation, with KL7 isolates also showing higher capsule production. Despite these differences, no significant variations in virulence genes were observed among the mucoid isolates, except for biofilm-associated and quorum-sensing genes. The highly virulent ST208/KL7 strains (AB276, AB313, and AB552) lacked biofilm-associated genes (csuA/BABCDE), indicating these genes do not directly cause differences in biofilm formation. CONCLUSION The mucoid A. baumannii isolates were extensively drug-resistant, and infections caused by these isolates could lead to higher mortality. However, not all strains had high virulence, with variations likely related to specific sequence types (ST) and K locus (KL) types.
Collapse
Affiliation(s)
- Jiao Chen
- School of Laboratory Medicine, Nanchang Medical College, PR China
| | - Guanghui Li
- School of Information Engineering, East China Jiaotong University, PR China
| | - Yanting Shao
- School of Laboratory Medicine, Nanchang Medical College, PR China
| | - Zhibin Cheng
- School of Laboratory Medicine, Nanchang Medical College, PR China
| | - Fen Wan
- School of Laboratory Medicine, Nanchang Medical College, PR China
| | - Danqin Wu
- Neurology ICU, The First Affiliated Hospital of Nanchang University, PR China
| | - Dandan Wei
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, PR China; Clinical Laboratory, China-Japan Friendship JiangXi Hospital, PR China
| | - Peng Liu
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, PR China
| | - Fangling Du
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, PR China
| | - Yang Liu
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, PR China; Clinical Laboratory, China-Japan Friendship JiangXi Hospital, PR China.
| |
Collapse
|
5
|
Tziolos RN, Karakonstantis S, Kritsotakis EI, Vassilopoulou L, Loukaki M, Tovil A, Kokkini S, Tryfinopoulou K, Ioannou P, Kondili E, Kofteridis DP. Limited impact of colistin resistance on mortality of intensive care patients with carbapenem-resistant bacteraemia. J Hosp Infect 2024; 153:14-20. [PMID: 39154897 DOI: 10.1016/j.jhin.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Increasing incidence of carbapenem-resistant Gram-negative bacteraemia (CR-GNB) has triggered increased use of polymyxins, likely fuelling the emergence and spread of colistin resistance. AIM To estimate the excess clinical burden of colistin resistance in intensive care patients with CR-GNB. METHODS A cohort of patients with CR-GNB during their stay in the intensive care unit (ICU) of a university hospital in Greece over a 4-year period (2020-2023) was constructed. Competing risks survival analysis was performed to estimate the burden associated with colistin resistance. FINDINGS Of the 177 ICU patients with CR-GNB, 134 (76%) had colistin-resistant isolates, predominantly Acinetobacter baumannii (79%), identified by broth microdilution. Patients with colistin-resistant infection were similar to those with colistin-susceptible infection with respect to age, sex, APACHE II score, Charlson comorbidity index score, Pitt bacteraemia score, prior surgery and the occurrence of polymicrobial cultures. However, patients in the colistin-resistant group had lower risk of mortality compared with those in the colistin-susceptible group (31% vs 44%, P = 0.004 at 14 days, respectively; 46% vs 56% at 28 days, respectively; P = 0.173). Multi-variable regression analysis confirmed that colistin-resistant CR-GNB was associated with significantly lower risk of inpatient death compared with colistin-susceptible CR-GNB within 14 days [cause-specific hazard ratio (csHR) 0.53, 95% CI 0.28-1.01) and 28 days (csHR 0.55, 95% CI 0.31-0.95) of infection onset. CONCLUSION Limited impact of colistin resistance on mortality was demonstrated in a large contemporary cohort of ICU patients with CR-GNB, possibly reflecting the recent shift away from colistin-based treatment regimens.
Collapse
Affiliation(s)
- R-N Tziolos
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - S Karakonstantis
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - E I Kritsotakis
- Laboratory of Biostatistics, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - L Vassilopoulou
- 2(nd) Department of Internal Medicine, Venizeleio General Hospital, Heraklion, Crete, Greece
| | - M Loukaki
- 2(nd) Department of Internal Medicine, Venizeleio General Hospital, Heraklion, Crete, Greece
| | - A Tovil
- 2(nd) Department of Internal Medicine, Venizeleio General Hospital, Heraklion, Crete, Greece
| | - S Kokkini
- Department of Intensive Care Medicine, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - K Tryfinopoulou
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - P Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - E Kondili
- Department of Intensive Care Medicine, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - D P Kofteridis
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
6
|
Abichabki N, Gaspar GG, Zacharias LV, Pocente RHC, Lima DAFS, de Freitas NAB, Brancini GTP, Moreira NC, Braga GÚL, Bellissimo-Rodrigues F, Bollela VR, Darini ALC, Andrade LN. In Vitro Synergistic Activity of Rifampicin Combined with Minimal Effective Antibiotic Concentration (MEAC) of Polymyxin B Against Extensively Drug-Resistant, Carbapenem-, and Polymyxin B-Resistant Klebsiella pneumoniae Clinical Isolates. Curr Microbiol 2024; 81:371. [PMID: 39307852 DOI: 10.1007/s00284-024-03897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
We investigated the in vitro antibacterial activity of the combination rifampicin (RIF) + polymyxin B (PB) against extensively drug-resistant (XDR) Klebsiella pneumoniae isolates. We evaluated clinical isolates co-resistant to PB (non-mcr carriers; eptB, mgrB, pmr operon, and ramA mutations) and to carbapenems (KPC, CTX-M, and SHV producers; including KPC + NDM co-producer), belonging to sequence types (ST) ST16, ST11, ST258, ST340, and ST437. We used the standard broth microdilution method to determine RIF and PB minimum inhibitory concentration (MIC) and the checkerboard assay to evaluate the fractional inhibitory concentration index (FICI) of RIF + PB as well as to investigate the lowest concentrations of RIF and PB that combined (RIF + PB) had antibacterial activity. Time-kill assays were performed to evaluate the synergistic effect of the combination against selected isolates. PB MIC (32-256 µg/mL) and RIF MIC (32-1024 µg/mL) were determined. FICI (<0.5) indicated a synergistic effect for all isolates evaluated for the combination RIF + PB. Our results showed that low concentrations of PB (PB minimal effective antibiotic concentration [MEAC], ≤0.25-1 µg/mL) favor RIF (≤0.03-0.125 µg/mL) to reach the bacterial target and exert antibacterial activity against PB-resistant isolates, and the synergistic effect was also observed in time-kill results. The combination of RIF + PB showed in vitro antibacterial activity against XDR, carbapenem-, and PB-resistant K. pneumoniae and could be further studied as a potential combination therapy, with cost-effectiveness and promising efficacy.
Collapse
Affiliation(s)
- Nathália Abichabki
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Gilberto Gambero Gaspar
- Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Av. Bandeirantes, 3900, Campus da USP - Cidade Universitária, Ribeirão Preto, SP, 14040-900, Brazil
- University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil
| | - Luísa Vieira Zacharias
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Renata Helena Cândido Pocente
- University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil
| | - Denissani Aparecida Ferrari Santos Lima
- University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil
| | - Natália Augusta Barbosa de Freitas
- University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil
| | - Guilherme Thomaz Pereira Brancini
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Natália Columbaro Moreira
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Gilberto Úbida Leite Braga
- Department of Clinical Analyses, Toxicology and Food Science (DACTB), School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fernando Bellissimo-Rodrigues
- Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Av. Bandeirantes, 3900, Campus da USP - Cidade Universitária, Ribeirão Preto, SP, 14040-900, Brazil
| | - Valdes Roberto Bollela
- Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Av. Bandeirantes, 3900, Campus da USP - Cidade Universitária, Ribeirão Preto, SP, 14040-900, Brazil
- University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil
| | - Ana Lúcia Costa Darini
- Department of Clinical Analyses, Toxicology and Food Science (DACTB), School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Leonardo Neves Andrade
- Department of Clinical Analyses, Toxicology and Food Science (DACTB), School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
7
|
Papazachariou A, Tziolos RN, Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:423. [PMID: 38786151 PMCID: PMC11117269 DOI: 10.3390/antibiotics13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Acinetobacter baumannii has emerged as a pressing challenge in clinical practice, mainly due to the development of resistance to multiple antibiotics, including colistin, one of the last-resort treatments. This review highlights all the possible mechanisms of colistin resistance and the genetic basis contributing to this resistance, such as modifications to lipopolysaccharide or lipid A structures, alterations in outer membrane permeability via porins and heteroresistance. In light of this escalating threat, the review also evaluates available treatment options. The development of new antibiotics (cefiderocol, sulbactam/durlobactam) although not available everywhere, and the use of various combinations and synergistic drug combinations (including two or more of the following: a polymyxin, ampicillin/sulbactam, carbapenems, fosfomycin, tigecycline/minocycline, a rifamycin, and aminoglycosides) are discussed in the context of overcoming colistin resistance of A. baumannii infections. Although most studied combinations are polymyxin-based combinations, non-polymyxin-based combinations have been emerging as promising options. However, clinical data remain limited and continued investigation is essential to determine optimal therapeutic strategies against colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Andria Papazachariou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Renatos-Nikolaos Tziolos
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Stamatis Karakonstantis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - George Samonis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
- Metropolitan Hospital, Neon Faliron, 18547 Athens, Greece
| | - Diamantis P. Kofteridis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| |
Collapse
|
8
|
Rahul R, Maheswary D, Damodaran N, Leela KV. Eravacycline -Synergistic activity with other antimicrobials in carbapenem resistant isolates of Escherichia coli and Acinetobacter baumannii. Diagn Microbiol Infect Dis 2023; 107:116006. [PMID: 37604046 DOI: 10.1016/j.diagmicrobio.2023.116006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 08/23/2023]
Abstract
Carbapenem resistant Enterobacteriaceae are unaffected by most used antibiotics. Carbapenem resistance in Gram-negative bacterial isolates poses a concern. Eravacycline is a potent new therapy option to treat organisms that exhibit extended-spectrum -lactamases and carbapenem-resistant Enterobacteriaceae. The chequerboard microdilution panel method was used to evaluate the effectiveness of eravacycline when combined with other antibiotics. Most effective against Escherichia coli isolates was the combination of eravacycline and polymyxin B, with 60% synergism and eravacycline-Ceftazidime combination was the most potent combination against Acinetobacter baumannii with 80% synergism. Eravacycline is having synergistic benefits against carbapenem-resistant isolates when combined with cephalosporins or polymyxin B.
Collapse
Affiliation(s)
- Radhakrishnan Rahul
- Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| | - Datchanamoorthy Maheswary
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| | - Narayanasamy Damodaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India.
| | - K V Leela
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
9
|
Quraini MA, Jabri ZA, Sami H, Mahindroo J, Taneja N, Muharrmi ZA, Busaidi IA, Rizvi M. Exploring Synergistic Combinations in Extended and Pan-Drug Resistant (XDR and PDR) Whole Genome Sequenced Acinetobacter baumannii. Microorganisms 2023; 11:1409. [PMID: 37374911 DOI: 10.3390/microorganisms11061409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The diminishing antimicrobial options for the treatment of XDR and PDR Acinetobacter baumannii is an increasing concern. In this study, we assessed the in vitro synergy of the fosfomycin (FOS) with meropenem (MEM), amikacin (AK), tigecycline (TGC), and colistin (CL) in whole genome sequenced isolates. Methods: Non-replicate whole genome sequenced (illumina next-generation sequencing platform, Clevergene, India), A. baumanii (7 XDR, 1PDR) were subjected to in vitro synergy testing by checkerboard (CB) and time kill assay (TKA) after MIC determination, with glucose-6-phosphate being incorporated in all runs. FOS was used as a cornerstone drug in four combinations and colistin in one. ResFinder, MLST, PlasmidFinder, and CSIPhylogeny tools were used. Results: Mortality occurred in three patients. Diverse MLST were observed, ST-1962 (3 isolates) and one each of ST2062, ST2063, ST1816, ST1806, ST234. FOS MICs ranged from 32 to 128 mg/L, MEM MIC: 16-64 mg/L, TGC MIC: ≤2-≤4 mg/L and AK MIC: >512 mg/L. CL: MIC range, 0.25-≤2 mg/L, PDR MIC > 16 mg/L. Synergy results by CB: FOS-MEM: synergy in ⅞ (90%) isolates. Synergy lowered MEM MICs to susceptibility breakpoints in 6/8 cases. CL-MEM Excellent synergy (3/3) isolates. FOS-AK Indifference in ⅞, antagonism ⅛ (AK-susceptible isolate). FOS-TGC Partial synergy (PS) in 8/8 (TGC MIC dropped to ≤0.25 mg/L in 3/8). In the PDR isolate, synergy was seen in FOS-MEM, CL-MEM, PS in FOS-CL, FOS-TGC, indifference in FOS-AK. TKA: Excellent synergy was observed with FOS-MEM from 4 h, while FOS-AK and FOS-TGC demonstrated synergy at 24 h. Synergy was achieved despite presence of widespread resistance markers against aminoglycosides (AacAad, AadA, AadB, Aph3″Ia, ArmA, Arr, StrA, StrB), beta-lactams (ADC, BlaA1, BlaA2, Zn-dependent_hydrolase, OXA-23, OXA-51, PER-1,TEM-1D, CARB-5, Mbl), sulphonamides (SulII, SulI), phenicols (CatBx, CmlA), macrolides (MphE, MsrE) and tetracycline (TetB) were widespread. Carbapenemase, CARB-5 was present in one isolate. Beta-lactamase genes OXA-23, OXA-51, BlaA2, Zn-dependent_hydrolase, ADC, Mbl and macrolide resistance genes MphE, MsrE were present in all 8 isolates. Conclusions: FOS-MEM and CL-MEM are promising combinations against A. baumannii. Synergy of FOS-MEM in intrinsically resistant A. baumannii shows that this antibiotic combination might be useful in treating such XDR and PDR pathogens.
Collapse
Affiliation(s)
- Munawr Al Quraini
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Zaaema Al Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hiba Sami
- Department of Microbiology, Jawahar Lal Nehru Medical College, AMU, Aligarh 202001, India
| | - Jaspreet Mahindroo
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Neelam Taneja
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Zakariya Al Muharrmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Ibrahim Al Busaidi
- Infectious Diseases Unit, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Meher Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
10
|
Efficacy of Fosfomycin-Containing Regimens for Treatment of Bacteremia Due to Pan-Drug Resistant Acinetobacter baumannii in Critically Ill Patients: A Case Series Study. Pathogens 2023; 12:pathogens12020286. [PMID: 36839558 PMCID: PMC9961360 DOI: 10.3390/pathogens12020286] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Acinetobacter baumannii (AB) has evolved over the last decades as a major problem in carbapenem-resistant gram-negative nosocomial infections, associated with high mortality rates especially in the intensive care unit (ICU). Recent reports highlight the increasing prevalence of resistance to colistin, a last resort therapeutic option for carbapenem-resistant AB. We retrospectively evaluated the characteristics, treatment regimens and outcomes of twenty patients with pan-drug resistant (PDR) AB primary bacteremia hospitalized in the ICU of the University General Hospital of Patras, during a two-year period (October 2020-September 2022). The 28-day mortality reached 50%. Between survivors and non-survivors, no differences were found regarding age, gender, and Charlson comorbidity index (CCI). However, non-survivors had higher APACHE II scores and higher prevalence of septic shock and COVID-19 infection. A significantly higher percentage in the survivor group received Fosfomycin as part of the combination regimen. Inclusion of fosfomycin in the combination therapeutic regimen was associated with significantly better survival as compared to non-fosfomycin-containing regimens. In view of the increasing prevalence of PDR-AB infections in ICUs, its associated high rates of mortality and the lack of effective treatment options, the observed survival benefit with fosfomycin inclusion in the therapeutic regimen merits further validation in larger prospective studies.
Collapse
|
11
|
Wang SH, Yang KY, Sheu CC, Lin YC, Chan MC, Feng JY, Chen CM, Chen CY, Zheng ZR, Chou YC, Peng CK. The prevalence, presentation and outcome of colistin susceptible-only Acinetobacter Baumannii-associated pneumonia in intensive care unit: a multicenter observational study. Sci Rep 2023; 13:140. [PMID: 36599842 DOI: 10.1038/s41598-022-26009-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Acinetobacter baumannii (CRAB) are both associated with significant morbidity and mortality in daily clinical practice, as well as in a critical care setting. It is unclear whether colistin susceptible-only Acinetobacter baumannii (CSO AB) is a unique phenotype separate from or a subset of CRAB-associated pneumonia. The aim of this study is to investigate the prevalence of CSO AB pneumonia and compare the presentation and outcome between CSO AB and CRAB-associated pneumonia in critically ill patients. This multicenter retrospective cohort study initially recruited 955 patients with CR-GNB pneumonia. After exclusion, 575 patients left who were ICU-admitted and had CRAB nosocomial pneumonia remained. Among them, 79 patients had CSO AB pneumonia, classified as the CSO AB group. The other 496 patients were classified as the CRAB group. We compared demographic characteristics, disease severity, and treatment outcomes between the two groups. The prevalence of CSO AB among all cases of CRAB pneumonia was 13.74% (79/575). The CSO AB and CRAB groups had similar demographic characteristics and disease severities at initial presentation. The in-hospital mortality rate was 45.6% and 46.4% for CSO AB and CRAB groups, respectively (p = 0.991). The CSO AB group had significantly better clinical outcomes at day 7 (65.8% vs 52.4%, p = 0.036) but longer length of ICU stay (27 days vs 19 days, p = 0.043) compared to the CRAB group. However, other treatment outcomes, including clinical outcomes at day 14 and 28, mortality, microbiological eradication, ventilator weaning, and newly onset dialysis, were similar. In conclusion, CSO AB accounted for 13.74% of all cases of CRAB pneumonia, and the clinical presentation and treatment outcomes of CSO AB and CRAB pneumonia were similar.
Collapse
Affiliation(s)
- Sheng-Huei Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Gong Rd, Neihu 114, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuang-Yao Yang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chao Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Chan
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Post Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Min Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Zhe-Rong Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Gong Rd, Neihu 114, Taipei, Taiwan.
| |
Collapse
|
12
|
Ozma MA, Abbasi A, Asgharzadeh M, Pagliano P, Guarino A, Köse Ş, Samadi Kafil H. Antibiotic therapy for pan-drug-resistant infections. LE INFEZIONI IN MEDICINA 2022; 30:525-531. [PMID: 36482958 PMCID: PMC9715010 DOI: 10.53854/liim-3004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Antibiotic resistance occurs when microorganisms resist the drugs used against the infection caused by them and neutralize their effects over time using various mechanisms. These mechanisms include preventing drug absorption, changing drug targets, drug inactivating, and using efflux pumps, which ultimately cause drug resistance, which is named pan-drug-resistant (PDR) infection if it is resistant to all antimicrobial agents. This type of drug resistance causes many problems in society and faces the health system with difficulties; therefore their treatment is crucial and encourages doctors to develop new drugs to treat them. PDR Gram-negative bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli are among the most significant resistant bacteria to many antimicrobial agents, and only a limited range of antibiotics, especially synergistically are effective on them. For the therapy of PDR A. baumannii, tigecycline in combination with colestimethate, imipenem, amikacin, and ampicillin-sulbactam are the most effective treatments. The utilization of β-lactamase inhibitors such as ceftolozane-tazobactam, ceftazidime-avibactam, or imipenem-cilastatin-relebactam has the most efficacy against PDR P. aeruginosa. The PDR K. pneumoniae has been treated in the last decades with tigecycline and colistin, but currently, nitrofurantoin, fosfomycin, and pivmecillinam seem to be the most effective agent for the therapy of PDR E. coli. While these drugs impressively struggle with PDR pathogens, due to the daily increase in antibiotic resistance in microorganisms worldwide, there is still an urgent need for the expansion of novel medicines and methods of combating resistance.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz,
Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology, Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz,
Iran
| | | | - Amedeo Guarino
- Department of Public Health, University of Naples Federico II, Naples,
Italy
| | - Şükran Köse
- Department of Infectious Diseases and Clinical Microbiology, 9 Eylul University, İzmir,
Turkey
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz,
Iran
| |
Collapse
|
13
|
Kamoshida G, Yamada N, Nakamura T, Yamaguchi D, Kai D, Yamashita M, Hayashi C, Kanda N, Sakaguchi M, Morimoto H, Sawada T, Okada T, Kaya Y, Takemoto N, Yahiro K. Preferential Selection of Low-Frequency, Lipopolysaccharide-Modified, Colistin-Resistant Mutants with a Combination of Antimicrobials in Acinetobacter baumannii. Microbiol Spectr 2022; 10:e0192822. [PMID: 36173297 PMCID: PMC9602988 DOI: 10.1128/spectrum.01928-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
Abstract
Colistin, which targets lipopolysaccharide (LPS), is used as a last-resort drug against severe infections caused by drug-resistant Acinetobacter baumannii. However, A. baumannii possesses two colistin-resistance mechanisms. LPS modification caused by mutations in pmrAB genes is often observed in clinical isolates of multidrug-resistant Gram-negative pathogens. In addition to LPS modification, A. baumannii has a unique colistin resistance mechanism, a complete loss of LPS due to mutations in the lpxACD genes, which are involved in LPS biosynthesis. This study aimed to elucidate the detailed mechanism of the emergence of colistin-resistant A. baumannii using strains with the same genetic background. Various colistin-resistant strains were generated experimentally using colistin alone and in combination with other antimicrobials, such as meropenem and ciprofloxacin, and the mutation spectrum was analyzed. In vitro selection of A. baumannii in the presence of colistin led to the emergence of strains harboring mutations in lpxACD genes, resulting in LPS-deficient colistin-resistant strains. However, combination of colistin with other antimicrobials led to the selection of pmrAB mutant strains, resulting in strains with modified LPS (LPS-modified strains). Further, the LPS-deficient strains showed decreased fitness and increased susceptibility to many antibiotics and disinfectants. As LPS-deficient strains have a higher biological cost than LPS-modified strains, our findings suggested that pmrAB mutants are more likely to be isolated in clinical settings. We provide novel insights into the mechanisms of resistance to colistin and provide substantial solutions along with precautions for facilitating current research and treatment of colistin-resistant A. baumannii infections. IMPORTANCE Acinetobacter baumannii has developed resistance to various antimicrobial drugs, and its drug-resistant strains cause nosocomial infections. Controlling these infections has become a global clinical challenge. Carbapenem antibiotics are the frontline treatment drugs for infectious diseases caused by A. baumannii. For patients with infections caused by carbapenem-resistant A. baumannii, colistin-based therapy is often the only treatment option. However, A. baumannii readily acquires resistance to colistin. Many patients infected with colistin-resistant A. baumannii undergo colistin treatment before isolation of the colistin-resistant strain, and it is hypothesized that colistin resistance predominantly emerges under selective pressure during colistin therapy. Although the concomitant use of colistin and carbapenems has been reported to have a synergistic effect in vitro against carbapenem-resistant A. baumannii strains, our observations strongly suggest the need for attention to the emergence of strains with a modified lipopolysaccharide during treatment.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Noriteru Yamada
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomoka Nakamura
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daiki Yamaguchi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daichi Kai
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Maho Yamashita
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Chiaki Hayashi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Nana Kanda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Moe Sakaguchi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hitoshi Morimoto
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Teppei Sawada
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomoko Okada
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuki Kaya
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kinnosuke Yahiro
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
14
|
Jantarathaneewat K, Camins B, Apisarnthanarak A. What are the considerations for the treatment of multidrug resistant Acinetobacter baumannii infections? Expert Opin Pharmacother 2022; 23:1667-1672. [PMID: 36210527 DOI: 10.1080/14656566.2022.2134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Kittiya Jantarathaneewat
- Center of Excellence in Pharmacy Practice and Management Research, Faculty of Pharmacy, Thammasat University, Pathum Thani, Thailand.,Research Group in Infectious Diseases Epidemiology and Prevention, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Bernard Camins
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anucha Apisarnthanarak
- Research Group in Infectious Diseases Epidemiology and Prevention, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand.,Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
15
|
Karakonstantis S, Kritsotakis EI. Editorial for the Special Issue: "Epidemiology, Prognosis and Antimicrobial Treatment of Extensively Antibiotic-Resistant Bacterial Infections". Antibiotics (Basel) 2022; 11:804. [PMID: 35740210 PMCID: PMC9220175 DOI: 10.3390/antibiotics11060804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
The increasing consumption of broad-spectrum antimicrobials is fuelling a vicious cycle leading to extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria [...].
Collapse
Affiliation(s)
- Stamatis Karakonstantis
- Internal Medicine Department, Division of Infectious Diseases, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Evangelos I. Kritsotakis
- Laboratory of Biostatistics, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| |
Collapse
|
16
|
Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060723. [PMID: 35740130 PMCID: PMC9220290 DOI: 10.3390/antibiotics11060723] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cefiderocol appears promising, as it can overcome most β-lactam resistance mechanisms (including β-lactamases, porin mutations, and efflux pumps). Resistance is uncommon according to large multinational cohorts, including against isolates resistant to carbapenems, ceftazidime/avibactam, ceftolozane/tazobactam, and colistin. However, alarming proportions of resistance have been reported in some recent cohorts (up to 50%). A systematic review was conducted in PubMed and Scopus from inception to May 2022 to review mechanisms of resistance, prevalence of heteroresistance, and in vivo emergence of resistance to cefiderocol during treatment. A variety of mechanisms, typically acting in concert, have been reported to confer resistance to cefiderocol: β-lactamases (especially NDM, KPC and AmpC variants conferring resistance to ceftazidime/avibactam, OXA-427, and PER- and SHV-type ESBLs), porin mutations, and mutations affecting siderophore receptors, efflux pumps, and target (PBP-3) modifications. Coexpression of multiple β-lactamases, often in combination with permeability defects, appears to be the main mechanism of resistance. Heteroresistance is highly prevalent (especially in A. baumannii), but its clinical impact is unclear, considering that in vivo emergence of resistance appears to be low in clinical studies. Nevertheless, cases of in vivo emerging cefiderocol resistance are increasingly being reported. Continued surveillance of cefiderocol’s activity is important as this agent is introduced in clinical practice.
Collapse
|
17
|
Law SKK, Tan HS. The Role of Quorum Sensing, Biofilm Formation, and Iron Acquisition as Key Virulence Mechanisms in Acinetobacter baumannii and the Corresponding Anti-virulence Strategies. Microbiol Res 2022; 260:127032. [DOI: 10.1016/j.micres.2022.127032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
|