1
|
Yadav M, Raju B, Narendra G, Kaur J, Kumar M, Silakari O, Sapra B. Leveraging machine learning to predict drug permeation: impact of menthol and limonene as enhancers. Mol Divers 2024:10.1007/s11030-024-11062-w. [PMID: 39680273 DOI: 10.1007/s11030-024-11062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
The present study aimed to develop robust machine learning (ML) models to predict the skin permeability of poorly water-soluble drugs in the presence of menthol and limonene as penetration enhancers (PEs). The ML models were also applied in virtual screening (VS) to identify hydrophobic drugs that exhibited better skin permeability in the presence of permeation enhancers i.e. menthol and limonene. The drugs identified through ML-based VS underwent experimental validation using in vitro skin penetration studies. The developed model predicted 80% probability of permeability enhancement for Sumatriptan Succinate (SS), Voriconazole (VCZ), and Pantoprazole Sodium (PS) with menthol and limonene. The in vitro release studies revealed that menthol increased penetration by approximately 2.49-fold, 2.25-fold, and 4.96-fold for SS, VCZ, and PS, respectively, while limonene enhanced permeability by approximately 1.32-fold, 2.27-fold, and 3.7-fold for SS, VCZ, and PS. The results from in silico and in vitro studies were positively correlated, indicating that the developed ML models could effectively reduce the need for extensive in vitro and in vivo experimentation.
Collapse
Grants
- BT/PR39876/BTIS/137/7/2021 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR39876/BTIS/137/7/2021 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR39876/BTIS/137/7/2021 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR39876/BTIS/137/7/2021 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR39876/BTIS/137/7/2021 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR39876/BTIS/137/7/2021 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR39876/BTIS/137/7/2021 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Baddipadige Raju
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Gera Narendra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Jasveer Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Manoj Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Bharti Sapra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
2
|
Parhi R, Sahoo SK, Das A. Applications of polysaccharides in topical and transdermal drug delivery: A recent update of literature. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | | | - Anik Das
- GITAM Deemed to be University, India
| |
Collapse
|
5
|
Zhou X, Wang L, Xu Y, Du W, Cai X, Wang F, Ling Y, Chen H, Wang Z, Hu B, Zheng Y. A pH and magnetic dual-response hydrogel for synergistic chemo-magnetic hyperthermia tumor therapy. RSC Adv 2018; 8:9812-9821. [PMID: 35540837 PMCID: PMC9078710 DOI: 10.1039/c8ra00215k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/02/2018] [Indexed: 12/03/2022] Open
Abstract
To overcome the toxicity of chemotherapy, increasing attention has been paid to local drug delivery systems (DDSs). pH-Sensitive hydrogels have emerged as promising DDS materials in the biomedical field due to their remarkable characteristics. However, the pH environment in tumor varies from person to person, which makes the applicability of systems based on pH challenging. In this study, we developed a contractible hydroxypropyl methyl cellulose (HPMC)/Fe3O4 hydrogel with dual-response pH and magnetic properties aiming to overcome the limitations of pH-sensitive hydrogel drug delivery systems and further increase their efficiency in tumor therapy. The HPMC/Fe3O4 hydrogel could act as a drug delivery system that combines pH-sensitive triggering and magnetic dual-response drug release for synergistic chemo-magnetic hyperthermia therapy. The drug delivery profile of the HPMC/Fe3O4/doxorubicin hydrochloride (DOX) hydrogel was determined in vitro and revealed a remarkable pH-sensitive performance. After synergistic chemo-magnetic hyperthermia treatment, mice with 4T1 breast cancer xenografts recovered without any recurrence or metastasis, demonstrating the synergistic effect of chemotherapy and magnetic hyperthermia therapy. Meanwhile, reduced toxicity and superior anticancer effects were achieved due to the combined effect of the pH and magnetic hyperthermia response properties. This study demonstrated the high efficacy and low toxicity of the improved design of HPMC/Fe3O4 for drug delivery, which may provide a promising approach for the application of chemo-magnetic hyperthermia cancer therapy. A pH and magnetic dual-responsive hydrogel highly sensitive to tumor acid microenvironment and efficient responsive magnetic-hyperthermia cancer eradication.![]()
Collapse
|
6
|
Wang F, Yang Y, Ling Y, Liu J, Cai X, Zhou X, Tang X, Liang B, Chen Y, Chen H, Chen D, Li C, Wang Z, Hu B, Zheng Y. Injectable and thermally contractible hydroxypropyl methyl cellulose/Fe 3O 4 for magnetic hyperthermia ablation of tumors. Biomaterials 2017; 128:84-93. [PMID: 28301803 DOI: 10.1016/j.biomaterials.2017.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 03/04/2017] [Accepted: 03/05/2017] [Indexed: 01/24/2023]
Abstract
The development of efficient strategies for the magnetic hyperthermia ablation of tumors remains challenging. To overcome the significant safety limitations, we developed a thermally contractible, injectable and biodegradable material for the minimally invasive and highly efficient magnetic hyperthermia ablation of tumors. This material was composed of hydroxypropyl methyl cellulose (HPMC), polyvinyl alcohol (PVA) and Fe3O4. The thermal contractibility of HPMC/Fe3O4 was designed to avoid damaging the surrounding normal tissue upon heating, which was confirmed by visual inspection, ultrasound imaging and computed tomography (CT). The efficient injectability of HPMC/Fe3O4 was proven using a very small needle. The biosafety of HPMC/Fe3O4 was evaluated by MTT and biochemical assays as well as flow cytometry (FCM). All the aforementioned data demonstrated the safety of HPMC/Fe3O4. The results of in vitro and ex vivo experiments showed that the temperature and necrotic volume of excised bovine liver were positively correlated with the HPMC/Fe3O4 weight, iron content and heating duration. The in vivo experimental results showed that the tumors could be completely ablated using 0.06 ml of HPMC/60%Fe3O4 after 180 s of induction heating. We believe that this novel, safe and biodegradable material will promote the rapid bench-to-bed translation of magnetic hyperthermia technology, and it is also expected to bring a new concept for the biomaterial research field.
Collapse
Affiliation(s)
- Fengjuan Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yang Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yi Ling
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Jianxin Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Xiaojun Cai
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Xiaohan Zhou
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Xiuzhen Tang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Bing Liang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yini Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Dengming Chen
- The Center of Material Analysis and Testing of Chongqing University of Science & Technology, Chongqing, 400010, PR China
| | - Chunhong Li
- The Center of Material Analysis and Testing of Chongqing University of Science & Technology, Chongqing, 400010, PR China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Bing Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yuanyi Zheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| |
Collapse
|