1
|
Song JG, Baral KC, Kim GL, Park JW, Seo SH, Kim DH, Jung DH, Ifekpolugo NL, Han HK. Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques. Drug Deliv 2023; 30:2183816. [PMID: 36880122 PMCID: PMC10003146 DOI: 10.1080/10717544.2023.2183816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Pharmaceutical application of therapeutic proteins has been continuously expanded for the treatment of various diseases. Efficient and reliable bioanalytical methods are essential to expedite the identification and successful clinical development of therapeutic proteins. In particular, selective quantitative assays in a high-throughput format are critical for the pharmacokinetic and pharmacodynamic evaluation of protein drugs and to meet the regulatory requirements for new drug approval. However, the inherent complexity of proteins and many interfering substances presented in biological matrices have a great impact on the specificity, sensitivity, accuracy, and robustness of analytical assays, thereby hindering the quantification of proteins. To overcome these issues, various protein assays and sample preparation methods are currently available in a medium- or high-throughput format. While there is no standard or universal approach suitable for all circumstances, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay often becomes a method of choice for the identification and quantitative analysis of therapeutic proteins in complex biological samples, owing to its high sensitivity, specificity, and throughput. Accordingly, its application as an essential analytical tool is continuously expanded in pharmaceutical R&D processes. Proper sample preparation is also important since clean samples can minimize the interference from co-existing substances and improve the specificity and sensitivity of LC-MS/MS assays. A combination of different methods can be utilized to improve bioanalytical performance and ensure more accurate quantification. This review provides an overview of various protein assays and sample preparation methods, with particular emphasis on quantitative protein analysis by LC-MS/MS.
Collapse
Affiliation(s)
- Jae Geun Song
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Kshitis Chandra Baral
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Gyu-Lin Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Ji-Won Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Soo-Hwa Seo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Da-Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Dong Hoon Jung
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Nonye Linda Ifekpolugo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hyo-Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
2
|
Pu S, Hadinoto K. A comparative study of antisolvent versus salting-out precipitations of glycopeptide vancomycin: Precipitation efficiency and product qualities. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2022.118181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Pons Royo MDC, Beulay JL, Valery E, Jungbauer A, Satzer P. Design of millidevices to expedite apparent solubility measurements. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00022a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A fast, automated and accurate millidevice for determination of the apparent solubility of proteins and impurities and different industrially relevant precipitating agents.
Collapse
Affiliation(s)
- Maria del Carme Pons Royo
- Department of Innovation, Novasep, 81 Boulevard de la Moselle, 54340 Pompey, France
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 18, 1190 Vienna, Austria
| | - Jean-Luc Beulay
- Department of Innovation, Novasep, 81 Boulevard de la Moselle, 54340 Pompey, France
| | - Eric Valery
- Department of Innovation, Novasep, 81 Boulevard de la Moselle, 54340 Pompey, France
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 18, 1190 Vienna, Austria
| | - Peter Satzer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| |
Collapse
|
4
|
Nieto-Veloza A, Zhong Q, Kim WS, D'Souza D, Krishnan HB, Dia VP. Utilization of tofu processing wastewater as a source of the bioactive peptide lunasin. Food Chem 2021; 362:130220. [PMID: 34098437 DOI: 10.1016/j.foodchem.2021.130220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The goal of our study was to design a simple and feasible method to obtain lunasin, a naturally-occurring bioactive peptide, from tofu whey wastewater. A combination of alcoholic precipitation of high-molecular weight proteins from the whey, isoelectric precipitation of lunasin enriched material, and purification via gel filtration chromatography was selected as the best approach using tofu whey prepared at the laboratory scale. This process was applied to tofu whey produced by a local tofu factory and 773 mg of 80% purity lunasin was obtained per kg of dry tofu whey. Significant reduction of nitric oxide, and pro-inflammatory cytokines TNF-α and IL-6 over lipopolysaccharide activated murine macrophages demonstrate its biological activity. Our three-step process is not only simpler and faster than the previously reported methods to obtain lunasin but provides a sustainable approach for the valorization of a waste product, promoting the better utilization of soybean nutrients and active compounds.
Collapse
Affiliation(s)
- Andrea Nieto-Veloza
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| | - Qixin Zhong
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| | - Won-Seok Kim
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
| | - Doris D'Souza
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| | - Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, USDA, Columbia, MO 65211, USA.
| | - Vermont P Dia
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| |
Collapse
|