1
|
Thakur R, Shishodia SK, Sharma A, Chauhan A, Kaur S, Shankar J. Accelerating the understanding of Aspergillus terreus: Epidemiology, physiology, immunology and advances. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100220. [PMID: 38303967 PMCID: PMC10831165 DOI: 10.1016/j.crmicr.2024.100220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Aspergillus species encompass a variety of infections, ranging from invasive aspergillosis to allergic conditions, contingent upon the immune status of the host. In this spectrum, Aspergillus terreus stands out due to its emergence as a notable pathogen and its intrinsic resistance to amphotericin-B. The significance of Aspergillus-associated infections has witnessed a marked increase in the past few decades, particularly with the increasing number of immunocompromised individuals. The exploration of epidemiology, morphological transitions, immunopathology, and novel treatment approaches such as new antifungal drugs (PC945, olorofim) and combinational therapy using antifungal drugs and phytochemicals (Phytochemicals: quercetin, shikonin, artemisinin), also using immunotherapies to modulate immune response has resulted in better outcomes. Furthermore, in the context COVID-19 era and its aftermath, fungal infections have emerged as a substantial challenge for both immunocompromised and immunocompetent individuals. This is attributed to the use of immune-suppressing therapies during COVID-19 infections and the increase in transplant cases. Consequently, this review aims to provide an updated overview encompassing the epidemiology, germination events, immunopathology, and novel drug treatment strategies against Aspergillus terreus-associated infections.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | | | - Ananya Sharma
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sumanpreet Kaur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | - Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| |
Collapse
|
2
|
Thakur C, Malhotra AS, Shankar J. Integrated Bioinformatics Analysis to Study Gallic Acid-Mediated Inhibition of Polyketide Synthase A from Aflatoxin Biosynthesis Pathway of Aspergillus flavus. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Khan DA, Hamdani SDA, Iftikhar S, Malik SZ, Zaidi NUSS, Gul A, Babar MM, Ozturk M, Turkyilmaz Unal B, Gonenc T. Pharmacoinformatics approaches in the discovery of drug-like antimicrobials of plant origin. J Biomol Struct Dyn 2021; 40:7612-7628. [PMID: 33663347 DOI: 10.1080/07391102.2021.1894982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Medicinal plants have served as an important source for addressing the ailments of humans and animals alike. The emergence of advanced technologies in the field of drug discovery and development has helped in isolating various bioactive phytochemicals and developing them as drugs. Owing to their significant pharmacological benefits and minimum adverse effects, they not only serve as good candidates for therapeutics themselves but also help in the identification and development of related drug like molecules against various metabolic and infectious diseases. The ever-increasing diversity, severity and incidence of infectious diseases has resulted in an exaggerated mortality and morbidity levels. Geno-proteomic mutations in microbes, irrational prescribing of antibiotics, antimicrobial resistance and human population explosion, all call for continuous efforts to discover and develop alternated therapeutic options against the microbes. This review article describes the pharmacoinformatics tools and methods which are currently used in the discovery of bioactive phytochemicals, thus making the process more efficient and effective. The pharmacological aspects of the drug discovery and development process have also been reviewed with reference to the in silico activities. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Duaa Ahmad Khan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Syed Damin Abbas Hamdani
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sahar Iftikhar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sohaib Zafar Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Najam-Us-Sahar Sadaf Zaidi
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Biotechnology Department, Arts & Sciences Faculty, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Tuba Gonenc
- Department of Pharmacognosy, Faculty of Pharmacy, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
4
|
Shishodia SK, Tiwari S, Hoda S, Vijayaraghavan P, Shankar J. SEM and qRT-PCR revealed quercetin inhibits morphogenesis of Aspergillus flavus conidia via modulating calcineurin-Crz1 signalling pathway. Mycology 2020; 11:118-125. [PMID: 32923020 PMCID: PMC7448844 DOI: 10.1080/21501203.2020.1711826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/29/2019] [Indexed: 12/02/2022] Open
Abstract
ASPERGILLUS FLAVUS exploits diverse mechanisms to survive during exposure to antifungal agents including morphogenesis. Germination of dormant conidia involves cascades of reactions integrated into the signalling pathway. This study documents the effect of phytochemical-quercetin on A. flavus during germination of conidia using scanning electron microscopy (SEM). Significant inhibition of conidial swelling of A. flavus in comparison to control was observed at 4 and 7 h Quantitative real-time PCR for genes from calcium signalling pathway and heat-shock proteins family showed up-regulation of heat shock (Hsp70 and Hsp90) and calcium signalling pathway genes (calcium-transporting ATPase and calmodulin) in response to quercetin at initial 4 h in comparison to control sample whereas up-regulation of Hsp70, calcineurin and transcription factor Crz1, were observed in both the treated samples. Gene encoding for calcium-kinase, cAMP, Rho-gdp, Plc and Pkc showed a constitutively higher level of expression in quercetin-treated sample in comparison to control at both time points. These data showed a clear response from genes encoding calcineurin-Crz1 signalling pathways and may find its application in the screening of antifungal agents. ABBREVIATIONS Hsp: Hear shock protein; MIC: Minimum Inhibitory Concentration; SEM: Scanning Electron Microscopy; qRT-PCR: Quantitative Real-Time Polymerase Chain Reaction.
Collapse
Affiliation(s)
- Sonia K. Shishodia
- Genomics laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Shraddha Tiwari
- Genomics laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Shanu Hoda
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | | | - Jata Shankar
- Genomics laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
5
|
Buitimea-Cantúa GV, Buitimea-Cantúa NE, Del Refugio Rocha-Pizaña M, Rosas-Burgos EC, Hernández-Morales A, Molina-Torres J. Antifungal and anti-aflatoxigenic activity of Heliopsis longipes roots and affinin/spilanthol against Aspergillus parasiticus by downregulating the expression of alfD and aflR genes of the aflatoxins biosynthetic pathway. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:210-219. [PMID: 31653182 DOI: 10.1080/03601234.2019.1681818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present study, ethanolic extract from Heliopsis longipes roots and affinin/spilanthol against Aspergillus parasiticus growth and aflatoxins production were studied in relation to the expression of aflD and aflR, two key genes of aflatoxins biosynthetic pathway. Phytochemical analysis of the ethanolic extract by GC-EIMS identified affinin/spilanthol (7.84 ± 0.27 mg g-1) as the most abundant compounds in H. longipes roots. The antifungal and anti-aflatoxigenic assays showed that affinin/spilanthol at 300 µg mL-1 produced the higher inhibition of radial growth (95%), as well as, the higher aflatoxins production inhibition (61%) in comparison to H. longipes roots (87% and 48%, respectively). qRT-PCR revealed that the expression of aflD and aflR genes showed a higher downregulation in affinin/spilanthol at 300 µg mL-1. The expression ratio of alfD was suppressed by affinin/spilanthol in 79% and aflR in 84%, while, a lower expression ratio suppressed by H. longipes was obtained, alfD (55%) and aflR (59%). Affinin/spilanthol possesses higher antifungal and anti-aflatoxigenic activity against A. parasiticus rather than H. longipes roots, and this anti-aflaxotigenic activity occurring via downregulation of the aflD and aflR genes. Thus, H. longipes roots and affinin/spilanthol can be considered potent antifungal agents against aflatoxigenic fungus, especially, affinin/spilanthol.
Collapse
Affiliation(s)
- Génesis V Buitimea-Cantúa
- Departamento de Biotecnología y Bioquímica, CINVESTAV, Irapuato, Guanajuato, México
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, México
| | - Nydia E Buitimea-Cantúa
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, México
| | | | - Ema Carina Rosas-Burgos
- Unidad Académica Multidisciplinaria Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles S.L.P, Ciudad Valles San Luis Potosí, México
| | | | - Jorge Molina-Torres
- Departamento de Biotecnología y Bioquímica, CINVESTAV, Irapuato, Guanajuato, México
| |
Collapse
|
6
|
Shishodia SK, Tiwari S, Shankar J. Resistance mechanism and proteins in Aspergillus species against antifungal agents. Mycology 2019; 10:151-165. [PMID: 31448149 PMCID: PMC6691784 DOI: 10.1080/21501203.2019.1574927] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/22/2019] [Indexed: 02/02/2023] Open
Abstract
Aspergillus species contain pathogenic and opportunistic fungal pathogens which have the potential
to cause mycosis (invasive aspergillosis) in humans. The existing antifungal drugs have
limitation largely due to the development of drug-resistant isolates. To gain insight
into the mechanism of action and antifungal drug resistance in Aspergillus species including biofilm formation, we have reviewed protein
data of Aspergillus species during interaction with
antifungals drugs (polynes, azoles and echinocandin) and phytochemicals (artemisinin,
coumarin and quercetin). Our analyses provided a list of Aspergillus proteins (72 proteins) that were abundant during interaction
with different antifungal agents. On the other hand, there are 26 proteins, expression
level of which is affected by more than two antifungal agents, suggesting the more
general response to the stress induced by the antifungal agents. Our analysis showed
enzymes from cell wall remodelling, oxidative stress response and energy metabolism are
the responsible factors for providing resistance against antifungal drugs in Aspergillus species and could be explored further in clinical
isolates. Also, these findings have clinical importance since the effect of drug
targeting different proteins can be potentiated by combination therapy. We have also
discussed the opportunities ahead to study the functional role of proteins from
environmental and clinical isolates of Aspergillus during
its interaction with the antifungal drugs. Abbreviations IPA: invasive pulmonary aspergillosis; IA: invasive aspergillosis; AmB: Amphotericin B;
CAS: Caspofungin; VRC: Voriconazole; ITC: Itraconazole; POS: Posaconazole; ART:
Artemisinin; QRT: Quercetin; CMR: Coumarin; MIC: minimal inhibitory concentration
Collapse
Affiliation(s)
- Sonia Kumari Shishodia
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Shraddha Tiwari
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
7
|
Integrated proteome and HPLC analysis revealed quercetin-mediated inhibition of aflatoxin B1 biosynthesis in Aspergillus flavus. 3 Biotech 2018; 8:47. [PMID: 29354358 DOI: 10.1007/s13205-017-1067-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022] Open
Abstract
The contamination of aflatoxins in maize or maize-related products synthesized by Aspergillus flavus causes severe economical loss and threat to human health. Use of eco-friendly phytochemicals has shown potential to inhibit secondary metabolites in Aspergillus species. Thus, A. flavus cultured in corn flour (CF) and corn flour with quercetin (CFQ) was used for protein extraction for proteome analysis using nLC-Q-TOF mass spectrometer. Proteome analysis revealed the expressions of 705 and 843 proteins in CFQ and CF, respectively. Gene Ontology Slim Categories (GOSC) of CF exhibited major transcriptional factors; involved in acetylation and deacetylation of histone proteins, carbohydrate metabolism, and hydrolase activity, whereas GOSC analysis of CFQ showed membrane transport activity, including both influx and efflux proteins. cAMP/PKA signaling pathway was observed in CFQ, whereas MAPK pathway in CF. To quantify biosynthesis of aflatoxin B1 (AFB1) in CF and CFQ, HPLC analysis at 7, 12, 24 and 48 h was carried out which showed decrease in AFB1 (1%) at 7-24 h in CFQ. However, remarkable decrease in AFB1 biosynthesis (51%) at 48 h time point was observed. Thus, the present study provided an insight into the mechanism of quercetin-mediated inhibition of aflatoxin biosynthesis in A. flavus and raises the possibility to use quercetin as an anti-aflatoxigenic agent.
Collapse
|