1
|
Susin-Calle S, Martinez-Rodriguez JE, Munteis E, Villoslada P. Ongoing phase 2 agents for multiple sclerosis: could we break the phase 3 trial deadlock? Expert Opin Investig Drugs 2025; 34:217-229. [PMID: 40000925 DOI: 10.1080/13543784.2025.2472240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/13/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system. While disease-modifying therapies have significantly improved the management of relapsing MS, progressive MS remains a major clinical challenge. AREAS COVERED This review provides a general overview of recent and ongoing phase 2 clinical trials investigating treatments for MS, summarizing emerging results when available. The trials are categorized based on the desired therapeutic effect: immunomodulatory treatments, neuroprotection, and remyelination. A comprehensive literature search was conducted using databases such as PubMed and ClinicalTrials.gov to identify relevant studies, with a focus on promising therapies that address both inflammatory and neurodegenerative processes in MS. EXPERT OPINION Despite promising results from phase 2 trials, many phase 3 trials fail to demonstrate significant efficacy. This discrepancy is partly due to limitations in biomarkers, which often lack disease specificity and fail to predict long-term outcomes. Additionally, smaller, narrowly focused phase 2 trials may overestimate efficacy, leading to challenges when transitioning to larger, more inclusive phase 3 trials. Recruitment of patients with less aggressive disease further complicates phase 3 success. Addressing these challenges requires the refinement of biomarkers, adoption of unified definitions for outcomes like progression independent of relapse activity (PIRA), and trial designs that better capture the complexity of MS progression.
Collapse
Affiliation(s)
- Silvia Susin-Calle
- Department of Neurology, Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| | | | - Elvira Munteis
- Department of Neurology, Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| | - Pablo Villoslada
- Department of Neurology, Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|
2
|
Han Y, Sun J, Xiaojuan, Li MX, Ma Q. Inosine pretreatment of pregnant rats ameliorates maternal inflammation-mediated hypomyelination in pups via microglia polarization switch. Brain Res 2024; 1834:148844. [PMID: 38432260 DOI: 10.1016/j.brainres.2024.148844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Periventricular leukomalacia (PVL) is a neurological condition observed in premature infants, characterized by hypomyelination and activation of microglia. Maternal inflammation-induced brain injury in offspring significantly contributes to the development of PVL. Currently, there are no clinical pharmaceutical interventions available for pregnant women to prevent maternal inflammation-mediated brain injury in their offspring. Inosine has been shown to modulate the immune response in diverse stressful circumstances, such as injury, ischemia, and inflammation. The aim of this investigation was to examine the potential prophylactic impact of inosine on offspring PVL induced by maternal inflammation. This was accomplished by administering a 1 mg/ml inosine solution (40 ml daily) to pregnant Sprague-Dawley (SD) rats for 16 consecutive days prior to their intraperitoneal injection of lipopolysaccharide (350 µg/kg, once a day, for two days). The results showed that maternal inosine pretreatment significantly reversed the reduction in MBP and CNPase (myelin-related markers), CC-1 and Olig2 (oligodendrocyte-related markers) in their PVL pups (P7), suggesting that inosine administration during pregnancy could improve hypomyelination and enhance the differentiation of oligodendrocyte precursor cells (OPCs) in their PVL pups. Furthermore, the protective mechanism of inosine against PVL is closely associated with the activation and polarization of microglia. This is evidenced by a notable reduction in the quantity of IBA 1-positive microglia, a decrease in the level of CD86 (a marker for M1 microglia), an increase in the level of Arg 1 (a marker for M2 microglia), as well as a decrease in the level of pro-inflammatory factors TNF-α, IL-1β, and IL-6, and an increase in the level of anti-inflammatory factors IL-4 and IL-10 in the brain of PVL pups following maternal inosine pretreatment. Taken together, inosine pretreatment of pregnant rats can improve hypomyelination in their PVL offspring by triggering the M1/M2 switch of microglia.
Collapse
Affiliation(s)
- Yong Han
- Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Jinping Sun
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, PR China.
| | - Xiaojuan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Ma Xin Li
- Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Quanrui Ma
- Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China.
| |
Collapse
|
3
|
Jiang F, Zhang F, Su Y, Zhang C, Chang T. Knowledge mapping of disease-modifying therapy (DMT) in multiple sclerosis (MS): A bibliometrics analysis. Heliyon 2024; 10:e31744. [PMID: 38868066 PMCID: PMC11168326 DOI: 10.1016/j.heliyon.2024.e31744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
Background Multiple sclerosis (MS) is a heterogeneous autoimmune disease, with a rapidly evolving body of literature on disease-modifying therapy (DMT) that urgently needs to be synthesized and regularized. Methods The original material used for the analysis was obtained from the Web of Science Core Collection (WoSCC) in the Science Citation Index Expanded Edition (SCI-E). The data material was accessed through VOSviewer, Citespace, R package "Bibliometrix", and Scimago Graphica for data analysis and visualization. Among them, the clustering algorithm based on the Largest Likelihood Ratio (LLR) and the burst citation algorithm is the key. Results As of November 6th, 2022, 4142 publications related to emerging disease-modifying therapies (e-DMT) for MS, 6521 publications related to traditional disease-modifying therapies (t-DMT) for MS, and 1793 publications in cross-cutting disease-modifying therapies (I-DMT) for MS were included in the analysis, respectively. Publications related to DMT in MS were analyzed descriptively (for three subjects: country, institution, and author) and predictively (for two subjects: keywords and references) separately according to three sections: e-DMT, t-DMT, and I-DMT. Topics that still have relevant reference output as of 2022 include the safety of Coronavirus disease 2019 (COVID-19) mRNA vaccination, therapeutic inertia (TI), cladribine tablets, autologous hematopoietic stem cell transplantation (aHSCT), progressive multiple sclerosis, and pediatric multiple sclerosis. Conclusion The future research focus for MS DMT is the combination trial or cross-trial of various treatment methods to improve the development of individualized treatment plans for MS patients. The exact contents of the research frontiers are included but not limited to ocrelizumab, fingolimod and other monoclonal antibodies, fumaric acid ester, cladribine tablet, aHSCT, and other interventions of randomized controlled trials (RCTs); the impact of mRNA COVID-19 vaccination on MS patients; TI, patient adherence, and other medical management issues; and continued exploration of biomarkers for more accurate disease classification based on the existing clinical indication classification.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
- Section of Health, No. 94804 Unit of the Chinese People's Liberation Army, Shanghai, 200434, China
- Resident Standardization Training Cadet Corps, Air Force Hospital of Eastern Theater, Nanjing, 210002, China
| | - Fenghe Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yue Su
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Wraith DC. Adaptive T cell tuning in immune regulation and immunotherapy of autoimmune diseases. Immunol Lett 2022; 244:12-18. [DOI: 10.1016/j.imlet.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022]
|
5
|
Meehan GR, Thomas R, Al Khabouri S, Wehr P, Hilkens CM, Wraith DC, Sieghart D, Bonelli M, Nagy G, Garside P, Tough DF, Lewis HD, Brewer JM. Preclinical models of arthritis for studying immunotherapy and immune tolerance. Ann Rheum Dis 2021; 80:1268-1277. [PMID: 34380700 PMCID: PMC8458054 DOI: 10.1136/annrheumdis-2021-220043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023]
Abstract
Increasingly earlier identification of individuals at high risk of rheumatoid arthritis (RA) (eg, with autoantibodies and mild symptoms) improves the feasibility of preventing or curing disease. The use of antigen-specific immunotherapies to reinstate immunological self-tolerance represent a highly attractive strategy due to their potential to induce disease resolution, in contrast to existing approaches that require long-term treatment of underlying symptoms.Preclinical animal models have been used to understand disease mechanisms and to evaluate novel immunotherapeutic approaches. However, models are required to understand critical processes supporting disease development such as the breach of self-tolerance that triggers autoimmunity and the progression from asymptomatic autoimmunity to joint pain and bone loss. These models would also be useful in evaluating the response to treatment in the pre-RA period.This review proposes that focusing on immune processes contributing to initial disease induction rather than end-stage pathological consequences is essential to allow development and evaluation of novel immunotherapies for early intervention. We will describe and critique existing models in arthritis and the broader field of autoimmunity that may fulfil these criteria. We will also identify key gaps in our ability to study these processes in animal models, to highlight where further research should be targeted.
Collapse
Affiliation(s)
- Gavin R Meehan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Shaima Al Khabouri
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Pascale Wehr
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Catharien Mu Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniela Sieghart
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - György Nagy
- Department of Rheumatology & Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Paul Garside
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - David F Tough
- GlaxoSmithKline Research and Development, Stevenage, Hertfordshire, UK
| | - Huw D Lewis
- GlaxoSmithKline Research and Development, Stevenage, Hertfordshire, UK
| | - James M Brewer
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
6
|
Schurgers E, Wraith DC. Induction of Tolerance to Therapeutic Proteins With Antigen-Processing Independent T Cell Epitopes: Controlling Immune Responses to Biologics. Front Immunol 2021; 12:742695. [PMID: 34567009 PMCID: PMC8459012 DOI: 10.3389/fimmu.2021.742695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022] Open
Abstract
The immune response to exogenous proteins can overcome the therapeutic benefits of immunotherapies and hamper the treatment of protein replacement therapies. One clear example of this is haemophilia A resulting from deleterious mutations in the FVIII gene. Replacement with serum derived or recombinant FVIII protein can cause anti-drug antibodies in 20-50% of individuals treated. The resulting inhibitor antibodies override the benefit of treatment and, at best, make life unpredictable for those treated. The only way to overcome the inhibitor issue is to reinstate immunological tolerance to the administered protein. Here we compare the various approaches that have been tested and focus on the use of antigen-processing independent T cell epitopes (apitopes) for tolerance induction. Apitopes are readily designed from any protein whether this is derived from a clotting factor, enzyme replacement therapy, gene therapy or therapeutic antibody.
Collapse
Affiliation(s)
| | - David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
An Overview of Peptide-Based Molecules as Potential Drug Candidates for Multiple Sclerosis. Molecules 2021; 26:molecules26175227. [PMID: 34500662 PMCID: PMC8434400 DOI: 10.3390/molecules26175227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) belongs to demyelinating diseases, which are progressive and highly debilitating pathologies that imply a high burden both on individual patients and on society. Currently, several treatment strategies differ in the route of administration, adverse events, and possible risks. Side effects associated with multiple sclerosis medications range from mild symptoms, such as flu-like or irritation at the injection site, to serious ones, such as progressive multifocal leukoencephalopathy and other life-threatening events. Moreover, the agents so far available have proved incapable of fully preventing disease progression, mostly during the phases that consist of continuous, accumulating disability. Thus, new treatment strategies, able to halt or even reverse disease progression and specific for targeting solely the pathways that contribute to the disease pathogenesis, are highly desirable. Here, we provide an overview of the recent literature about peptide-based systems tested on experimental autoimmune encephalitis (EAE) models. Since peptides are considered a unique therapeutic niche and important elements in the pharmaceutical landscape, they could open up new therapeutic opportunities for the treatment of MS.
Collapse
|
8
|
Shepard ER, Wegner A, Hill EV, Burton BR, Aerts S, Schurgers E, Hoedemaekers B, Ng STH, Streeter HB, Jansson L, Wraith DC. The Mechanism of Action of Antigen Processing Independent T Cell Epitopes Designed for Immunotherapy of Autoimmune Diseases. Front Immunol 2021; 12:654201. [PMID: 33936079 PMCID: PMC8079784 DOI: 10.3389/fimmu.2021.654201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy with antigen-processing independent T cell epitopes (apitopes) targeting autoreactive CD4+ T cells has translated to the clinic and been shown to modulate progression of both Graves’ disease and multiple sclerosis. The model apitope (Ac1-9[4Y]) renders antigen-specific T cells anergic while repeated administration induces both Tr1 and Foxp3+ regulatory cells. Here we address why CD4+ T cell epitopes should be designed as apitopes to induce tolerance and define the antigen presenting cells that they target in vivo. Furthermore, we reveal the impact of treatment with apitopes on CD4+ T cell signaling, the generation of IL-10-secreting regulatory cells and the systemic migration of these cells. Taken together these findings reveal how apitopes induce tolerance and thereby mediate antigen-specific immunotherapy of autoimmune diseases.
Collapse
Affiliation(s)
- Ella R Shepard
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Anja Wegner
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Elaine V Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Bronwen R Burton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Sarah Aerts
- Apitope International NV, Diepenbeek, Belgium
| | | | | | - Sky T H Ng
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Heather B Streeter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Metaxakis A, Petratou D, Tavernarakis N. Molecular Interventions towards Multiple Sclerosis Treatment. Brain Sci 2020; 10:brainsci10050299. [PMID: 32429225 PMCID: PMC7287961 DOI: 10.3390/brainsci10050299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune life-threatening disease, afflicting millions of people worldwide. Although the disease is non-curable, considerable therapeutic advances have been achieved through molecular immunotherapeutic approaches, such as peptides vaccination, administration of monoclonal antibodies, and immunogenic copolymers. The main aims of these therapeutic strategies are to shift the MS-related autoimmune response towards a non-inflammatory T helper 2 (Th2) cells response, inactivate or ameliorate cytotoxic autoreactive T cells, induce secretion of anti-inflammatory cytokines, and inhibit recruitment of autoreactive lymphocytes to the central nervous system (CNS). These approaches can efficiently treat autoimmune encephalomyelitis (EAE), an essential system to study MS in animals, but they can only partially inhibit disease progress in humans. Nevertheless, modern immunotherapeutic techniques remain the most promising tools for the development of safe MS treatments, specifically targeting the cellular factors that trigger the initiation of the disease.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Greece; (A.M.); (D.P.)
| | - Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Greece; (A.M.); (D.P.)
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Greece; (A.M.); (D.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 71110 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-391066
| |
Collapse
|
10
|
Abstract
T cells recognize and respond to self antigens in both cancer and autoimmunity. One strategy to influence this response is to incorporate amino acid substitutions into these T cell-specific epitopes. This strategy is being reconsidered now with the goal of increasing time to regression with checkpoint blockade therapies in cancer and antigen-specific immunotherapies in autoimmunity. We discuss how these amino acid substitutions change the interactions with the MHC class I or II molecule and the responding T cell repertoire. Amino acid substitutions in epitopes that are the most effective in therapies bind more strongly to T cell receptor and/or MHC molecules and cross-react with the same repertoire of T cells as the natural antigen.
Collapse
Affiliation(s)
- Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA.
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, 1775 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|