1
|
Koivu M, Sihvonen AJ, Eerola-Rautio J, Pauls KAM, Resendiz-Nieves J, Vartiainen N, Kivisaari R, Scheperjans F, Pekkonen E. Clinical and Brain Morphometry Predictors of Deep Brain Stimulation Outcome in Parkinson's Disease. Brain Topogr 2024; 37:1186-1194. [PMID: 38662300 PMCID: PMC11408547 DOI: 10.1007/s10548-024-01054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Subthalamic deep brain stimulation (STN-DBS) is known to improve motor function in advanced Parkinson's disease (PD) and to enable a reduction of anti-parkinsonian medication. While the levodopa challenge test and disease duration are considered good predictors of STN-DBS outcome, other clinical and neuroanatomical predictors are less established. This study aimed to evaluate, in addition to clinical predictors, the effect of patients' individual brain topography on DBS outcome. The medical records of 35 PD patients were used to analyze DBS outcomes measured with the following scales: Part III of the Unified Parkinson's Disease Rating Scale (UPDRS-III) off medication at baseline, and at 6-months during medication off and stimulation on, use of anti-parkinsonian medication (LED), Abnormal Involuntary Movement Scale (AIMS) and Non-Motor Symptoms Questionnaire (NMS-Quest). Furthermore, preoperative brain MRI images were utilized to analyze the brain morphology in relation to STN-DBS outcome. With STN-DBS, a 44% reduction in the UPDRS-III score and a 43% decrease in the LED were observed (p<0.001). Dyskinesia and non-motor symptoms decreased significantly [median reductions of 78,6% (IQR 45,5%) and 18,4% (IQR 32,2%) respectively, p=0.001 - 0.047]. Along with the levodopa challenge test, patients' age correlated with the observed DBS outcome measured as UPDRS-III improvement (ρ= -0.466 - -0.521, p<0.005). Patients with greater LED decline had lower grey matter volumes in left superior medial frontal gyrus, in supplementary motor area and cingulum bilaterally. Additionally, patients with greater UPDRS-III score improvement had lower grey matter volume in similar grey matter areas. These findings remained significant when adjusted for sex, age, baseline LED and UPDRS scores respectively and for total intracranial volume (p=0.0041- 0.001). However, only the LED decrease finding remained significant when the analyses were further controlled for stimulation amplitude. It appears that along with the clinical predictors of STN-DBS outcome, individual patient topographic differences may influence DBS outcome. Clinical Trial Registration Number: NCT06095245, registration date October 23, 2023, retrospectively registered.
Collapse
Affiliation(s)
- Maija Koivu
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland.
| | - Aleksi J Sihvonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Eerola-Rautio
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| | - K Amande M Pauls
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| | | | - Nuutti Vartiainen
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| |
Collapse
|
2
|
Liu J, Chen S, Chen J, Wang B, Zhang Q, Xiao L, Zhang D, Cai X. Structural Brain Connectivity Guided Optimal Contact Selection for Deep Brain Stimulation of the Subthalamic Nucleus. World Neurosurg 2024; 188:e546-e554. [PMID: 38823445 DOI: 10.1016/j.wneu.2024.05.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy in ameliorating the motor symptoms of Parkinson disease. However, postoperative optimal contact selection is crucial for achieving the best outcome of deep brain stimulation of the subthalamic nucleus surgery, but the process is currently a trial-and-error and time-consuming procedure that relies heavily on surgeons' clinical experience. METHODS In this study, we propose a structural brain connectivity guided optimal contact selection method for deep brain stimulation of the subthalamic nucleus. Firstly, we reconstruct the DBS electrode location and estimate the stimulation range using volume of tissue activated from each DBS contact. Then, we extract the structural connectivity features by concatenating fractional anisotropy and the number of streamlines features of activated regions and the whole brain regions. Finally, we use a convolutional neural network with convolutional block attention module to identify the structural connectivity features for the optimal contact selection. RESULTS We review the data of 800 contacts from 100 patients with Parkinson disease for the experiment. The proposed method achieves promising results, with the average accuracy of 97.63%, average precision of 94.50%, average recall of 94.46%, and average specificity of 98.18%, respectively. Our method can provide the suggestion for optimal contact selection. CONCLUSIONS Our proposed method can improve the efficiency and accuracy of DBS optimal contact selection, reduce the dependence on surgeons' experience, and has the potential to facilitate the development of advanced DBS technology.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shouxuan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jianwei Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Bo Wang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qiusheng Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Linxia Xiao
- Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Center for High Performance Computing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Doudou Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaodong Cai
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
3
|
Molina Galindo LS, Gonzalez-Escamilla G, Fleischer V, Grotegerd D, Meinert S, Ciolac D, Person M, Stein F, Brosch K, Nenadić I, Alexander N, Kircher T, Hahn T, Winter Y, Othman AE, Bittner S, Zipp F, Dannlowski U, Groppa S. Concurrent inflammation-related brain reorganization in multiple sclerosis and depression. Brain Behav Immun 2024; 119:978-988. [PMID: 38761819 DOI: 10.1016/j.bbi.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Neuroinflammation affects brain tissue integrity in multiple sclerosis (MS) and may have a role in major depressive disorder (MDD). Whether advanced magnetic resonance imaging characteristics of the gray-to-white matter border serve as proxy of neuroinflammatory activity in MDD and MS remain unknown. METHODS We included 684 participants (132 MDD patients with recurrent depressive episodes (RDE), 70 MDD patients with a single depressive episode (SDE), 222 MS patients without depressive symptoms (nMS), 58 MS patients with depressive symptoms (dMS), and 202 healthy controls (HC)). 3 T-T1w MRI-derived gray-to-white matter contrast (GWc) was used to reconstruct and characterize connectivity alterations of GWc-covariance networks by means of modularity, clustering coefficient, and degree. A cross-validated support vector machine was used to test the ability of GWc to stratify groups according to their depression symptoms, measured with BDI, at the single-subject level in MS and MDD independently. FINDINGS MS and MDD patients showed increased modularity (ANOVA partial-η2 = 0.3) and clustering (partial-η2 = 0.1) compared to HC. In the subgroups, a linear trend analysis attested a gradient of modularity increases in the form: HC, dMS, nMS, SDE, and RDE (ANOVA partial-η2 = 0.28, p < 0.001) while this trend was less evident for clustering coefficient. Reduced morphological integrity (GWc) was seen in patients with increased depressive symptoms (partial-η2 = 0.42, P < 0.001) and was associated with depression scores across patient groups (r = -0.2, P < 0.001). Depressive symptoms in MS were robustly classified (88 %). CONCLUSIONS Similar structural network alterations in MDD and MS exist, suggesting possible common inflammatory events like demyelination, neuroinflammation that are caught by GWc analyses. These alterations may vary depending on the severity of symptoms and in the case of MS may elucidate the occurrence of comorbid depression.
Collapse
Affiliation(s)
- Lara S Molina Galindo
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maren Person
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Frederike Stein
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Katharina Brosch
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Igor Nenadić
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Nina Alexander
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Tilo Kircher
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Yaroslav Winter
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Ahmed E Othman
- Department of Neuroradiology, Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
4
|
Cury RG, França C. Tailoring and personalizing deep brain stimulation for Parkinson's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-2. [PMID: 38763145 PMCID: PMC11102809 DOI: 10.1055/s-0044-1786823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Affiliation(s)
- Rubens Gisbert Cury
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo SP, Brazil
| | - Carina França
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| |
Collapse
|
5
|
Silva NA, Barrios-Martinez J, Yeh FC, Hodaie M, Roque D, Boerwinkle VL, Krishna V. Diffusion and functional MRI in surgical neuromodulation. Neurotherapeutics 2024; 21:e00364. [PMID: 38669936 PMCID: PMC11064589 DOI: 10.1016/j.neurot.2024.e00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Surgical neuromodulation has witnessed significant progress in recent decades. Notably, deep brain stimulation (DBS), delivered precisely within therapeutic targets, has revolutionized the treatment of medication-refractory movement disorders and is now expanding for refractory psychiatric disorders, refractory epilepsy, and post-stroke motor recovery. In parallel, the advent of incisionless treatment with focused ultrasound ablation (FUSA) can offer patients life-changing symptomatic relief. Recent research has underscored the potential to further optimize DBS and FUSA outcomes by conceptualizing the therapeutic targets as critical nodes embedded within specific brain networks instead of strictly anatomical structures. This paradigm shift was facilitated by integrating two imaging modalities used regularly in brain connectomics research: diffusion MRI (dMRI) and functional MRI (fMRI). These advanced imaging techniques have helped optimize the targeting and programming techniques of surgical neuromodulation, all while holding immense promise for investigations into treating other neurological and psychiatric conditions. This review aims to provide a fundamental background of advanced imaging for clinicians and scientists, exploring the synergy between current and future approaches to neuromodulation as they relate to dMRI and fMRI capabilities. Focused research in this area is required to optimize existing, functional neurosurgical treatments while serving to build an investigative infrastructure to unlock novel targets to alleviate the burden of other neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Nicole A Silva
- Department of Neurological Surgery, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | | | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mojgan Hodaie
- Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Daniel Roque
- Department of Neurology, University of North Carolina in Chapel Hill, NC, USA
| | - Varina L Boerwinkle
- Department of Neurology, University of North Carolina in Chapel Hill, NC, USA
| | - Vibhor Krishna
- Department of Neurological Surgery, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
El Ouadih Y, Marques A, Pereira B, Luisoni M, Claise B, Coste J, Sontheimer A, Chaix R, Debilly B, Derost P, Morand D, Durif F, Lemaire JJ. Deep brain stimulation of the subthalamic nucleus in severe Parkinson's disease: relationships between dual-contact topographic setting and 1-year worsening of speech and gait. Acta Neurochir (Wien) 2023; 165:3927-3941. [PMID: 37889334 DOI: 10.1007/s00701-023-05843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/24/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Subthalamic nucleus (STN) deep brain stimulation (DBS) alleviates severe motor fluctuations and dyskinesia in Parkinson's disease, but may result in speech and gait disorders. Among the suspected or demonstrated causes of these adverse effects, we focused on the topography of contact balance (CB; individual, right and left relative dual positions), a scantly studied topic, analyzing the relationships between symmetric or non-symmetric settings, and the worsening of these signs. METHOD An observational monocentric study was conducted on a series of 92 patients after ethical approval. CB was specified by longitudinal and transversal positions and relation to the STN (CB sub-aspects) and totalized at the patient level (patient CB). CB was deemed symmetric when the two contacts were at the same locations relative to the STN. CB was deemed asymmetric when at least one sub-aspect differed in the patient CB. Baseline and 1-year characteristics were routinely collected: (i) general, namely, Unified Parkinson's Disease Rating Scores (UPDRS), II, III motor and IV, daily levodopa equivalent doses, and Parkinson's Disease Questionnaire of Quality of Life (PDQ39) scores; (ii) specific, namely scores for speech (II-5 and III-18) and axial signs (II-14, III-28, III-29, and III-30). Only significant correlations were considered (p < 0.05). RESULTS Baseline characteristics were comparable (symmetric versus asymmetric). CB settings were related to deteriorations of speech and axial signs: communication PDQ39 and UPDRS speech and gait scores worsened exclusively with symmetric settings; the most influential CB sub-aspect was symmetric longitudinal position. CONCLUSION Our findings suggest that avoiding symmetric CB settings, whether by electrode positioning or shaping of electric fields, could reduce worsening of speech and gait.
Collapse
Affiliation(s)
- Youssef El Ouadih
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Ana Marques
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Service de Neurologie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Bruno Pereira
- Direction de La Recherche Clinique Et de L'Innovation, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Maxime Luisoni
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Béatrice Claise
- Service de Radiologie, Unité de Neuroradiologie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Jérôme Coste
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Anna Sontheimer
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Rémi Chaix
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Bérangère Debilly
- Service de Neurologie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Philippe Derost
- Service de Neurologie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Dominique Morand
- Direction de La Recherche Clinique Et de L'Innovation, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Franck Durif
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Service de Neurologie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France.
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France.
| |
Collapse
|
7
|
Andrews L, Keller SS, Osman-Farah J, Macerollo A. A structural magnetic resonance imaging review of clinical motor outcomes from deep brain stimulation in movement disorders. Brain Commun 2023; 5:fcad171. [PMID: 37304793 PMCID: PMC10257440 DOI: 10.1093/braincomms/fcad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Patients with movement disorders treated by deep brain stimulation do not always achieve successful therapeutic alleviation of motor symptoms, even in cases where surgery is without complications. Magnetic resonance imaging (MRI) offers methods to investigate structural brain-related factors that may be predictive of clinical motor outcomes. This review aimed to identify features which have been associated with variability in clinical post-operative motor outcomes in patients with Parkinson's disease, dystonia, and essential tremor from structural MRI modalities. We performed a literature search for articles published between 1 January 2000 and 1 April 2022 and identified 5197 articles. Following screening through our inclusion criteria, we identified 60 total studies (39 = Parkinson's disease, 11 = dystonia syndromes and 10 = essential tremor). The review captured a range of structural MRI methods and analysis techniques used to identify factors related to clinical post-operative motor outcomes from deep brain stimulation. Morphometric markers, including volume and cortical thickness were commonly identified in studies focused on patients with Parkinson's disease and dystonia syndromes. Reduced metrics in basal ganglia, sensorimotor and frontal regions showed frequent associations with reduced motor outcomes. Increased structural connectivity to subcortical nuclei, sensorimotor and frontal regions was also associated with greater motor outcomes. In patients with tremor, increased structural connectivity to the cerebellum and cortical motor regions showed high prevalence across studies for greater clinical motor outcomes. In addition, we highlight conceptual issues for studies assessing clinical response with structural MRI and discuss future approaches towards optimizing individualized therapeutic benefits. Although quantitative MRI markers are in their infancy for clinical purposes in movement disorder treatments, structural features obtained from MRI offer the powerful potential to identify candidates who are more likely to benefit from deep brain stimulation and provide insight into the complexity of disorder pathophysiology.
Collapse
Affiliation(s)
- Luke Andrews
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Simon S Keller
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
| | - Jibril Osman-Farah
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Antonella Macerollo
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| |
Collapse
|
8
|
França C, Carra RB, Diniz JM, Munhoz RP, Cury RG. Deep brain stimulation in Parkinson's disease: state of the art and future perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:105-115. [PMID: 35976323 PMCID: PMC9491408 DOI: 10.1590/0004-282x-anp-2022-s133] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 05/14/2023]
Abstract
For more than 30 years, Deep Brain Stimulation (DBS) has been a therapeutic option for Parkinson's disease (PD) treatment. However, this therapy is still underutilized mainly due to misinformation regarding risks and clinical outcomes. DBS can ameliorate several motor and non-motor symptoms, improving patients' quality of life. Furthermore, most of the improvement after DBS is long-lasting and present even in advanced PD. Adequate patient selection, precise electric leads placement, and correct DBS programming are paramount for good surgical outcomes. Nonetheless, DBS still has many limitations: axial symptoms and signs, such as speech, balance and gait, do not improve to the same extent as appendicular symptoms and can even be worsened as a direct or indirect consequence of surgery and stimulation. In addition, there are still unanswered questions regarding patient's selection, surgical planning and programming techniques, such as the role of surgicogenomics, more precise imaging-based lead placement, new brain targets, advanced programming strategies and hardware features. The net effect of these innovations should not only be to refine the beneficial effect we currently observe on selected symptoms and signs but also to improve treatment resistant facets of PD, such as axial and non-motor features. In this review, we discuss the current state of the art regarding DBS selection, implant, and programming, and explore new advances in the DBS field.
Collapse
Affiliation(s)
- Carina França
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo, SP, Brazil
| | - Rafael Bernhart Carra
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo, SP, Brazil
| | - Juliete Melo Diniz
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Divisão de Neurocirurgia Funcional, São Paulo, SP, Brazil
| | - Renato Puppi Munhoz
- University of Toronto, Toronto Western Hospital, Movement Disorders Centre, Toronto, ON, Canada
| | - Rubens Gisbert Cury
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Shih YC, Tseng WYI, Montaser-Kouhsari L. Recent advances in using diffusion tensor imaging to study white matter alterations in Parkinson's disease: A mini review. Front Aging Neurosci 2022; 14:1018017. [PMID: 36910861 PMCID: PMC9992993 DOI: 10.3389/fnagi.2022.1018017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/26/2022] [Indexed: 02/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease with cardinal motor symptoms. In addition to motor symptoms, PD is a heterogeneous disease accompanied by many non-motor symptoms that dominate the clinical manifestations in different stages or subtypes of PD, such as cognitive impairments. The heterogeneity of PD suggests widespread brain structural changes, and axonal involvement appears to be critical to the pathophysiology of PD. As α-synuclein pathology has been suggested to cause axonal changes followed by neuronal degeneration, diffusion tensor imaging (DTI) as an in vivo imaging technique emerges to characterize early detectable white matter changes due to PD. Here, we reviewed the past 5-year literature to show how DTI has helped identify axonal abnormalities at different PD stages or in different PD subtypes and atypical parkinsonism. We also showed the recent clinical utilities of DTI tractography in interventional treatments such as deep brain stimulation (DBS). Mounting evidence supported by multisite DTI data suggests that DTI along with the advanced analytic methods, can delineate dynamic pathophysiological processes from the early to late PD stages and differentiate distinct structural networks affected in PD and other parkinsonism syndromes. It indicates that DTI, along with recent advanced analytic methods, can assist future interventional studies in optimizing treatments for PD patients with different clinical conditions and risk profiles.
Collapse
Affiliation(s)
- Yao-Chia Shih
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - Wen-Yih Isaac Tseng
- AcroViz Inc., Taipei, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | | |
Collapse
|