1
|
Fabiano AR, Newman MW, Dombroski JA, Rowland SJ, Knoblauch SV, Kusunose J, Gibson‐Corley KN, Kaufman BG, Ren L, Caskey CF, King MR. Applying Ultrasound to Mechanically and Noninvasively Sensitize Prostate Tumors to TRAIL-Mediated Apoptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412995. [PMID: 39976192 PMCID: PMC12005757 DOI: 10.1002/advs.202412995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/26/2025] [Indexed: 02/21/2025]
Abstract
Non-surgical and safe prostate cancer (PCa) therapies are in demand. Soluble tumor necrosis factor (TNF-α) related apoptosis inducing ligand (TRAIL), a cancer-specific drug, shows preclinical efficacy but has a short circulation half-life. This research has shown that physiological fluid shear stress activates mechanosensitive ion channels (MSCs), such as Piezo1, enhancing TRAIL-mediated apoptosis in cancer cells. Herein, noninvasive, focal ultrasound (FUS) is implemented to augment the pro-apoptotic effects of TRAIL. Using thermally safe FUS parameters, it is observed that TRAIL sensitivity increases with higher FUS pressure in PCa cells, mediated by Piezo1. This is confirmed by examining the effects of calcium chelation, MSC inhibitors, and PIEZO knockdown. In vivo, a multi-dose study with 10 min FUS exposure shows that 0 and 4-h intervals between TRAIL and FUS significantly reduce tumor burden, with an increase in apoptosis evident by enhanced cleaved-caspase 3 expression. This mechanotherapy offers a clinically translatable approach by utilizing widely available FUS technology, applicable to treat additional cancer types.
Collapse
Affiliation(s)
- Abigail R. Fabiano
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of BioengineeringRice UniversityHoustonTX77005USA
| | - Malachy W. Newman
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Jenna A. Dombroski
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Schyler J. Rowland
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | | | - Jiro Kusunose
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTN37235USA
| | - Katherine N. Gibson‐Corley
- Department of PathologyMicrobiology and ImmunologyDivision of Comparative MedicineVanderbilt University Medical CenterNashvilleTN37235USA
| | | | - Liqin Ren
- Department of BioengineeringRice UniversityHoustonTX77005USA
| | - Charles F. Caskey
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTN37235USA
- Department of Radiology and Radiological SciencesVanderbilt UniversityNashvilleTN37235USA
| | - Michael R. King
- Department of BioengineeringRice UniversityHoustonTX77005USA
| |
Collapse
|
2
|
Guo S, Ya Z, Wu P, Zhang L, Wan M. Enhanced Sonothrombolysis Induced by High-Intensity Focused Acoustic Vortex. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1907-1917. [PMID: 35764456 DOI: 10.1016/j.ultrasmedbio.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
High-intensity focused ultrasound (HIFU) thrombolysis provides a targeted and non-invasive therapy for thrombosis-related diseases. Rapid thrombolysis and restoration of blood flow are vital to reduce the disability and death rate. The objective of this study was to explore the feasibility of using a high-intensity focused acoustic vortex (HIFAV) to enhance sonothrombolysis. The in vitro clots were treated with HIFU with a peak negative pressure (PNP) of 2.86 MPa (HIFU A) or 3.27 MPa (HIFU B) or HIFAV with a PNP of 2.14 MPa. The results revealed that HIFAV thrombolysis could achieve a significantly higher efficiency than HIFU (HIFAV: 65.4%, HIFU A: 24.1%, HIFU B: 31.6%, p < 0.01), even at a lower intensity. The average size of the debris particles generated in HIFAV thrombolysis was similar to that in HIFU. Additionally, the cavitation activities were found to be more intense in HIFAV thrombolysis. Although the efficiency of HIFAV thrombolysis was higher when the pulse repetition frequency increased from 100 to 500 Hz (41.4% vs. 65.4%, p < 0.05), it decreased when the PRF reached 1000 Hz (29.9%). Lastly, it was found that increasing the duty cycle from 5% to 15% led to a higher efficiency in HIFAV thrombolysis (40.3% vs. 75.2%, p < 0.001). This study illustrated that HIFAV provided enhanced thrombolysis and that its efficiency could be further increased by optimizing the ultrasound parameters.
Collapse
Affiliation(s)
- Shifang Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Ya
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Pengying Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Gaur P, Casey KM, Kubanek J, Li N, Mohammadjavadi M, Saenz Y, Glover GH, Bouley DM, Pauly KB. Histologic safety of transcranial focused ultrasound neuromodulation and magnetic resonance acoustic radiation force imaging in rhesus macaques and sheep. Brain Stimul 2020; 13:804-814. [PMID: 32289711 DOI: 10.1016/j.brs.2020.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Neuromodulation by transcranial focused ultrasound (FUS) offers the potential to non-invasively treat specific brain regions, with treatment location verified by magnetic resonance acoustic radiation force imaging (MR-ARFI). OBJECTIVE To investigate the safety of these methods prior to widespread clinical use, we report histologic findings in two large animal models following FUS neuromodulation and MR-ARFI. METHODS Two rhesus macaques and thirteen Dorset sheep were studied. FUS neuromodulation was targeted to the primary visual cortex in rhesus macaques and to subcortical locations, verified by MR-ARFI, in eleven sheep. Both rhesus macaques and five sheep received a single FUS session, whereas six sheep received repeated sessions three to six days apart. The remaining two control sheep did not receive ultrasound but otherwise underwent the same anesthetic and MRI procedures as the eleven experimental sheep. Hematoxylin and eosin-stained sections of brain tissue (harvested zero to eleven days following FUS) were evaluated for tissue damage at FUS and control locations as well as tissue within the path of the FUS beam. TUNEL staining was used to evaluate for the presence of apoptosis in sheep receiving high dose FUS. RESULTS No FUS-related pre-mortem histologic findings were observed in the rhesus macaques or in any of the examined sheep. Extravascular red blood cells (RBCs) were present within the meninges of all sheep, regardless of treatment group. Similarly, small aggregates of perivascular RBCs were rarely noted in non-target regions of neural parenchyma of FUS-treated (8/11) and untreated (2/2) sheep. However, no concurrent histologic abnormalities were observed, consistent with RBC extravasation occurring as post-mortem artifact following brain extraction. Sheep within the high dose FUS group were TUNEL-negative at the targeted site of FUS. CONCLUSIONS The absence of FUS-related histologic findings suggests that the neuromodulation and MR-ARFI protocols evaluated do not cause tissue damage.
Collapse
Affiliation(s)
- Pooja Gaur
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Yamil Saenz
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Gary H Glover
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Donna M Bouley
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Abdul Razzak R, Florence GJ, Gunn-Moore FJ. Approaches to CNS Drug Delivery with a Focus on Transporter-Mediated Transcytosis. Int J Mol Sci 2019; 20:E3108. [PMID: 31242683 PMCID: PMC6627589 DOI: 10.3390/ijms20123108] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022] Open
Abstract
Drug delivery to the central nervous system (CNS) conferred by brain barriers is a major obstacle in the development of effective neurotherapeutics. In this review, a classification of current approaches of clinical or investigational importance for the delivery of therapeutics to the CNS is presented. This classification includes the use of formulations administered systemically that can elicit transcytosis-mediated transport by interacting with transporters expressed by transvascular endothelial cells. Neurotherapeutics can also be delivered to the CNS by means of surgical intervention using specialized catheters or implantable reservoirs. Strategies for delivering drugs to the CNS have evolved tremendously during the last two decades, yet, some factors can affect the quality of data generated in preclinical investigation, which can hamper the extension of the applications of these strategies into clinically useful tools. Here, we disclose some of these factors and propose some solutions that may prove valuable at bridging the gap between preclinical findings and clinical trials.
Collapse
Affiliation(s)
- Rana Abdul Razzak
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Gordon J Florence
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Frank J Gunn-Moore
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| |
Collapse
|
5
|
Abstract
BACKGROUND The development of high-intensity magnetic resonance imaging (MRI)-guided focused ultrasound (MRIgFUS) ablation has widened the spectrum of interventional techniques for stereotactic functional neurosurgery of lesions. This has resulted in novel incisionless intervention approaches for the therapy of tremor disorders. The safety and efficacy is documented by recent study data. OBJECTIVES This article encompasses a description of the technological basis and typical course of MRIgFUS interventions, a comparison to alternative open or incisionless surgical techniques as well as a review of the current evidence base for MRIgFUS ablation in the context of lesional interventions to treat tremor. MATERIAL AND METHODS Narrative literature review and comparison. RESULTS Depending on the surgical target and tremor etiology published trials of MRIgFUS ablation report a reduction of tremor intensity of up to 80% after 6-12 months follow-up without the disadvantages of open brain surgery. CONCLUSION The MRIgFUS functional neurosurgery is conducted only at a limited number of treatment sites. First data on lesions of the thalamic ventral intermediary nucleus (V.im.) as well as subthalamic fiber tracts have been published. These results indicate an effective and safe treatment of tremor disorders by MRIgFUS ablation. Incisionless lesional surgery using MRIgFUS is a significant addition to the interventional armamentarium for functional stereotactic neurosurgery and a potentially valuable alternative to established interventional therapy options for tremor disorders.
Collapse
|
6
|
Gaur P, Werner B, Feng X, Fielden SW, Meyer CH, Grissom WA. Spatially-segmented undersampled MRI temperature reconstruction for transcranial MR-guided focused ultrasound. J Ther Ultrasound 2017; 5:13. [PMID: 28560040 PMCID: PMC5448150 DOI: 10.1186/s40349-017-0092-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/23/2017] [Indexed: 11/13/2022] Open
Abstract
Background Volumetric thermometry with fine spatiotemporal resolution is desirable to monitor MR-guided focused ultrasound (MRgFUS) procedures in the brain, but requires some form of accelerated imaging. Accelerated MR temperature imaging methods have been developed that undersample k-space and leverage signal correlations over time to suppress the resulting undersampling artifacts. However, in transcranial MRgFUS treatments, the water bath surrounding the skull creates signal variations that do not follow those correlations, leading to temperature errors in the brain due to signal aliasing. Methods To eliminate temperature errors due to the water bath, a spatially-segmented iterative reconstruction method was developed. The method fits a k-space hybrid signal model to reconstruct temperature changes in the brain, and a conventional MR signal model in the water bath. It was evaluated using single-channel 2DFT Cartesian, golden angle radial, and spiral data from gel phantom heating, and in vivo 8-channel 2DFT data from a FUS thalamotomy. Water bath signal intensity in phantom heating images was scaled between 0-100% to investigate its effect on temperature error. Temperature reconstructions of retrospectively undersampled data were performed using the spatially-segmented method, and compared to conventional whole-image k-space hybrid (phantom) and SENSE (in vivo) reconstructions. Results At 100% water bath signal intensity, 3 ×-undersampled spatially-segmented temperature reconstruction error was nearly 5-fold lower than the whole-image k-space hybrid method. Temperature root-mean square error in the hot spot was reduced on average by 27 × (2DFT), 5 × (radial), and 12 × (spiral) using the proposed method. It reduced in vivo error 2 × in the brain for all acceleration factors, and between 2 × and 3 × in the temperature hot spot for 2-4 × undersampling compared to SENSE. Conclusions Separate reconstruction of brain and water bath signals enables accelerated MR temperature imaging during MRgFUS procedures with low errors due to undersampling using Cartesian and non-Cartesian trajectories. The spatially-segmented method benefits from multiple coils, and reconstructs temperature with lower error compared to measurements from SENSE-reconstructed images. The acceleration can be applied to increase volumetric coverage and spatiotemporal resolution.
Collapse
Affiliation(s)
- Pooja Gaur
- Department of Radiology, Stanford University, Stanford, USA
| | - Beat Werner
- Center for MR-Research, University Children's Hospital, Zurich, Switzerland
| | - Xue Feng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | - Samuel W Fielden
- Autism and Developmental Medicine Institute, Geisinger Health System, Danville, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | - William A Grissom
- Institute of Imaging Science, Vanderbilt University, 1161 21st Ave S, Nashville, 37232 USA.,Department of Biomedical Engineering, Vanderbilt University, 21st Ave S, Nashville, 37232 USA
| |
Collapse
|
7
|
Pajek D, Burgess A, Huang Y, Hynynen K. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2151-61. [PMID: 25023095 PMCID: PMC4130783 DOI: 10.1016/j.ultrasmedbio.2014.03.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 05/03/2023]
Abstract
The purpose of this study was to evaluate use of intravascular perfluorocarbon droplets to reduce the sonication power required to achieve clot lysis with high-intensity focused ultrasound. High-intensity focused ultrasound with droplets was initially applied to blood clots in an in vitro flow apparatus, and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to illustrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24 ± 5% of the sonication power without droplets. Recanalization occurred in 71% of rabbits that received 1-ms pulsed sonications during continuous intravascular droplet infusion (p = 0.041 vs controls). Preliminary experiments indicated that damage was confined to the ultrasonic focus, suggesting that tolerable treatments would be possible with a more tightly focused hemispheric array that allows the whole focus to be placed inside of the main arteries in the human brain.
Collapse
Affiliation(s)
- Daniel Pajek
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Alison Burgess
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Yuexi Huang
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Kyriakou A, Neufeld E, Werner B, Paulides MM, Szekely G, Kuster N. A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound. Int J Hyperthermia 2013; 30:36-46. [PMID: 24325307 DOI: 10.3109/02656736.2013.861519] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of phased array transducers and their integration with magnetic resonance (MR) guidance and thermal monitoring has established transcranial MR-guided focused ultrasound (tcMRgFUS) as an attractive non-invasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of transcranial FUS (tcFUS) therapy, as its heterogeneous nature and acoustic characteristics induce significant phase aberrations and energy attenuation, especially at the higher acoustic frequencies employed in tcFUS thermal therapy. These aberrations may distort and shift the acoustic focus as well as induce heating at the patient's scalp and skull bone. Phased array transducers feature hundreds of elements that can be driven individually, each with its own phase and amplitude. This feature allows for compensation of skull-induced aberrations by calculation and application of appropriate phase and amplitude corrections. In this paper, we illustrate the importance of precise refocusing and provide a comprehensive review of the wide variety of numerical and experimental techniques that have been used to estimate these corrections.
Collapse
Affiliation(s)
- Adamos Kyriakou
- IT'IS Foundation for Research on Information Technologies in Society , Zurich , Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
ter Haar G. Safety first: progress in calibrating high-intensity focused ultrasound treatments. IMAGING IN MEDICINE 2013; 5:567-575. [DOI: 10.2217/iim.13.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|