1
|
Ali RQ, Meyer-Miner A, David-Rachel M, Lee FJH, Wilkins BJ, Karpen SJ, Ciruna B, Ghanekar A, Kamath BM. Loss of zebrafish pkd1l1 causes biliary defects that have implications for biliary atresia splenic malformation. Dis Model Mech 2023; 16:dmm049326. [PMID: 37675454 PMCID: PMC10581383 DOI: 10.1242/dmm.049326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
Biliary atresia is a fibroinflammatory neonatal disease with no effective therapies. A subset of cases (10-20%) is associated with laterality defects - labeled biliary atresia splenic malformation (BASM) syndrome. Recently, whole-exome sequencing of patients with BASM identified deleterious variants in PKD1L1. PKD1L1 is involved in left-right axis determination; however, its role in cholangiocytes is unknown. We generated the pkd1l1hsc117 allele using CRISPR/Cas9 mutagenesis in zebrafish to determine the role of Pkd1l1 in biliary development and function. Wild-type and mutant larvae were assessed for laterality defects, biliary function and biliary tree architecture at 5 days post fertilization. pkd1l1hsc117 mutant larvae exhibited early left-right patterning defects. The gallbladder was positioned on the left in 47% of mutants compared to 4% of wild-type larvae. Accumulation of PED6 in the gallbladder, an indicator of hepatobiliary function, was significantly reduced in pkd1l1hsc117 mutants (46%) compared to wild-type larvae (4%). pkd1l1hsc117 larvae exhibited fewer biliary epithelial cells and reduced density of the intrahepatic biliary network compared to those in wild-type larvae. These data highlight the essential role of pkd1l1 in normal development and function of the zebrafish biliary system, supporting a role for this gene as a cause of BASM.
Collapse
Affiliation(s)
- Rouknuddin Q. Ali
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Anne Meyer-Miner
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marie David-Rachel
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fiona J. H. Lee
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Benjamin J. Wilkins
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Saul J. Karpen
- Department of Pediatrics Emory, University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Brian Ciruna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anand Ghanekar
- Division of General Surgery, University Health Network, Toronto, ON M5C 2C4, Canada
- Department of Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Binita M. Kamath
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
2
|
Demin KA, Zabegalov KA, Kolesnikova TO, Galstyan DS, Kositsyn YMHB, Costa FV, de Abreu MS, Kalueff AV. Animal Inflammation-Based Models of Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:91-104. [PMID: 36949307 DOI: 10.1007/978-981-19-7376-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Mounting evidence links psychiatric disorders to central and systemic inflammation. Experimental (animal) models of psychiatric disorders are important tools for translational biopsychiatry research and CNS drug discovery. Current experimental models, most typically involving rodents, continue to reveal shared fundamental pathological pathways and biomarkers underlying the pathogenetic link between brain illnesses and neuroinflammation. Recent data also show that various proinflammatory factors can alter brain neurochemistry, modulating the levels of neurohormones and neurotrophins in neurons and microglia. The role of "active" glia in releasing a wide range of proinflammatory cytokines also implicates glial cells in various psychiatric disorders. Here, we discuss recent animal inflammation-related models of psychiatric disorders, focusing on their translational perspectives and the use of some novel promising model organisms (zebrafish), to better understand the evolutionally conservative role of inflammation in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Konstantin A Demin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | | | - David S Galstyan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Yuriy M H B Kositsyn
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Fabiano V Costa
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Murilo S de Abreu
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
- Laboratory of Translational Biopsychiatry, Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
- Ural Federal University, Ekaterinburg, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
3
|
Jagtap U, Basu S, Lokhande L, Bharti N, Sachidanandan C. BML-257, a Small Molecule that Protects against Drug-Induced Liver Injury in Zebrafish. Chem Res Toxicol 2022; 35:1393-1399. [PMID: 35796757 DOI: 10.1021/acs.chemrestox.2c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of many essential drugs is restricted due to their deleterious effects on the liver. Molecules that can prevent or protect the liver from drug-induced liver injury (DILI) would be invaluable in such situations. We used a transgenic line in zebrafish with a hepatocyte-specific expression of bacterial nitroreductase to cause temporally controlled liver damage. A whole organism-based chemical screen using the transgenic line identified BML-257, a potent small molecule AKT inhibitor, that protected the liver against metronidazole-induced liver injury. BML-257 also showed potent prophylactic and pro-regenerative activity in this liver damage model. BML-257 was tested in two independent toxicological models of liver injury caused by acetaminophen and isoniazid and was found to be protective against damage. This suggests that BML-257 has the potential to protect against multiple kinds of DILI.
Collapse
Affiliation(s)
- Urmila Jagtap
- CSIR-Institute of Genomics & Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sandeep Basu
- CSIR-Institute of Genomics & Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Lavanya Lokhande
- CSIR-Institute of Genomics & Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India
| | - Nikhil Bharti
- CSIR-Institute of Genomics & Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics & Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
4
|
Zabegalov KN, Wang D, Yang L, Wang J, Hu G, Serikuly N, Alpyshov ET, Khatsko SL, Zhdanov A, Demin KA, Galstyan DS, Volgin AD, de Abreu MS, Strekalova T, Song C, Amstislavskaya TG, Sysoev Y, Musienko PE, Kalueff AV. Decoding the role of zebrafish neuroglia in CNS disease modeling. Brain Res Bull 2020; 166:44-53. [PMID: 33027679 DOI: 10.1016/j.brainresbull.2020.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
Neuroglia, including microglia and astrocytes, is a critical component of the central nervous system (CNS) that interacts with neurons to modulate brain activity, development, metabolism and signaling pathways. Thus, a better understanding of the role of neuroglia in the brain is critical. Complementing clinical and rodent data, the zebrafish (Danio rerio) is rapidly becoming an important model organism to probe the role of neuroglia in brain disorders. With high genetic and physiological similarity to humans and rodents, zebrafish possess some common (shared), as well as some specific molecular biomarkers and features of neuroglia development and functioning. Studying these common and zebrafish-specific aspects of neuroglia may generate important insights into key brain mechanisms, including neurodevelopmental, neurodegenerative, neuroregenerative and neurological processes. Here, we discuss the biology of neuroglia in humans, rodents and fish, its role in various CNS functions, and further directions of translational research into the role of neuroglia in CNS disorders using zebrafish models.
Collapse
Affiliation(s)
- Konstantin N Zabegalov
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | | | | | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Division of Molecular Psychiatry, Centre of Mental Health, University of Würzburg, Würzburg, Germany
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Yury Sysoev
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Petersburg State University, St. Petersburg, Russia; Department of Pharmacology and Clinical Pharmacology, St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Pavel E Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Petersburg State University, St. Petersburg, Russia; Institute of Phthisiopulmonology, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
5
|
Cofer ZC, Cui S, EauClaire SF, Kim C, Tobias JW, Hakonarson H, Loomes KM, Matthews RP. Methylation Microarray Studies Highlight PDGFA Expression as a Factor in Biliary Atresia. PLoS One 2016; 11:e0151521. [PMID: 27010479 PMCID: PMC4806872 DOI: 10.1371/journal.pone.0151521] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/27/2016] [Indexed: 01/21/2023] Open
Abstract
Biliary atresia (BA) is a progressive fibro-inflammatory disorder that is the leading indication for liver transplantation in children. Although there is evidence implicating genetic, infectious, environmental, and inflammatory causes, the etiology of BA remains unknown. We have recently reported that cholangiocytes from BA patients showed decreased DNA methylation relative to disease- and non-disease controls, supporting a potential role for DNA hypomethylation in BA etiopathogenesis. In the current study, we examined the methylation status of specific genes in human BA livers using methylation microarray technology. We found global DNA hypomethylation in BA samples as compared to disease- and non-disease controls at specific genetic loci. Hedgehog pathway members, SHH and GLI2, known to be upregulated in BA, were both hypomethylated, validating this approach as an investigative tool. Another region near the PDGFA locus was the most significantly hypomethylated in BA, suggesting potential aberrant expression. Validation assays confirmed increased transcriptional and protein expression of PDGFA in BA livers. We also show that PDGF-A protein is specifically localized to cholangiocytes in human liver samples. Injection of PDGF-AA protein dimer into zebrafish larvae caused biliary developmental and functional defects. In addition, activation of the Hedgehog pathway caused increased expression of PDGF-A in zebrafish larvae, providing a previously unrecognized link between PDGF and the Hedgehog pathway. Our findings implicate DNA hypomethylation as a specific factor in mediating overexpression of genes associated with BA and identify PDGF as a new candidate in BA pathogenesis.
Collapse
Affiliation(s)
- Zenobia C. Cofer
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Shuang Cui
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Steven F. EauClaire
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Cecilia Kim
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - John W. Tobias
- Penn Center for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kathleen M. Loomes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Randolph P. Matthews
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|