1
|
Elkin AM, Robbins S, Barros CS, Bossing T. The Critical Balance Between Quiescence and Reactivation of Neural Stem Cells. Biomolecules 2025; 15:672. [PMID: 40427564 PMCID: PMC12108614 DOI: 10.3390/biom15050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Neural stem cells (NSC) are multipotent, self-renewing cells that give rise to all neural cell types within the central nervous system. During adulthood, most NSCs exist in a quiescent state which can be reactivated in response to metabolic and signalling changes, allowing for long-term continuous neurogenesis and response to injury. Ensuring a critical balance between quiescence and reactivation is required to maintain the limited NSC reservoir and neural replenishment throughout lifetime. The precise mechanisms and signalling pathways behind this balance are at the focus of current research. In this review, we highlight and discuss recent studies using Drosophila, mammalian and zebrafish models contributing to the understanding of molecular mechanisms underlying quiescence and reactivation of NSCs.
Collapse
Affiliation(s)
| | | | - Claudia S. Barros
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, UK; (A.M.E.); (S.R.)
| | - Torsten Bossing
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, UK; (A.M.E.); (S.R.)
| |
Collapse
|
2
|
Popova S, Bhattarai P, Yilmaz E, Lascu D, Kuo JH, Erdem G, Coban B, Michling J, Cosacak MI, Tayran H, Kurth T, Schambony A, Buchholz F, Gentzel M, Kizil C. NCBP2-AS2 is a mitochondrial microprotein, regulates energy metabolism and neurogenesis, and is downregulated in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.25.634884. [PMID: 39975220 PMCID: PMC11838228 DOI: 10.1101/2025.01.25.634884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Microproteins, short functional peptides encoded by small genes, are emerging as critical regulators of cellular processes, yet their roles in mitochondrial function and neurodegeneration remain underexplored. In this study, we identify NCBP2-AS2 as an evolutionarily conserved mitochondrial microprotein with significant roles in energy metabolism and neurogenesis. Using a combination of cellular and molecular approaches, including CRISPR/Cas9 knockout models, stoichiometric co- immunoprecipitation, and advanced imaging techniques, we demonstrate that NCBP2-AS2 localizes to the inner mitochondrial space and interacts with translocase of the inner membrane (TIM) chaperones. These interactions suggest a role in ATPase subunit transport, supported by the observed reductions in ATPase subunit levels and impaired glucose metabolism in NCBP2-AS2-deficient cells. In zebrafish, NCBP2-AS2 knockout led to increased astroglial proliferation, microglial abundance, and enhanced neurogenesis, particularly under amyloid pathology. Notably, we show that NCBP2-AS2 expression is consistently downregulated in human Alzheimer's disease brains and zebrafish amyloidosis models, suggesting a conserved role in neurodegenerative pathology. These findings reveal a novel link between mitochondrial protein transport, energy metabolism, and neural regeneration, positioning NCBP2-AS2 as a potential therapeutic target for mitigating mitochondrial dysfunction and promoting neurogenesis in neurodegenerative diseases such as Alzheimer's disease.
Collapse
|
3
|
Tayran H, Yilmaz E, Bhattarai P, Min Y, Wang X, Ma Y, Wang N, Jeong I, Nelson N, Kassara N, Cosacak MI, Dogru RM, Reyes-Dumeyer D, Stenersen JM, Reddy JS, Qiao M, Flaherty D, Gunasekaran TI, Yang Z, Jurisch-Yaksi N, Teich AF, Kanekiyo T, Tosto G, Vardarajan BN, İş Ö, Ertekin-Taner N, Mayeux R, Kizil C. ABCA7-dependent induction of neuropeptide Y is required for synaptic resilience in Alzheimer's disease through BDNF/NGFR signaling. CELL GENOMICS 2024; 4:100642. [PMID: 39216475 PMCID: PMC11480862 DOI: 10.1016/j.xgen.2024.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/04/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Genetic variants in ABCA7, an Alzheimer's disease (AD)-associated gene, elevate AD risk, yet its functional relevance to the etiology is unclear. We generated a CRISPR-Cas9-mediated abca7 knockout zebrafish to explore ABCA7's role in AD. Single-cell transcriptomics in heterozygous abca7+/- knockout combined with Aβ42 toxicity revealed that ABCA7 is crucial for neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), and nerve growth factor receptor (NGFR) expressions, which are crucial for synaptic integrity, astroglial proliferation, and microglial prevalence. Impaired NPY induction decreased BDNF and synaptic density, which are rescuable with ectopic NPY. In induced pluripotent stem cell-derived human neurons exposed to Aβ42, ABCA7-/- suppresses NPY. Clinical data showed reduced NPY in AD correlated with elevated Braak stages, genetic variants in NPY associated with AD, and epigenetic changes in NPY, NGFR, and BDNF promoters linked to ABCA7 variants. Therefore, ABCA7-dependent NPY signaling via BDNF-NGFR maintains synaptic integrity, implicating its impairment in increased AD risk through reduced brain resilience.
Collapse
Affiliation(s)
- Hüseyin Tayran
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Elanur Yilmaz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Prabesh Bhattarai
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Yuhao Min
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Yiyi Ma
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Ni Wang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nastasia Nelson
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Nada Kassara
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE), Tatzberg 41, 01307 Dresden, Germany
| | - Ruya Merve Dogru
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Dolly Reyes-Dumeyer
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Jakob Mørkved Stenersen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joseph S Reddy
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Min Qiao
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Delaney Flaherty
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Tamil Iniyan Gunasekaran
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Zikun Yang
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrew F Teich
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Giuseppe Tosto
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Badri N Vardarajan
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, Columbia University, 722 W. 168th St., New York, NY 10032, USA
| | - Caghan Kizil
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
4
|
Evsiukova VS, Sorokin IE, Kulikov PA, Kulikov AV. Alterations in the brain serotonin system and serotonin-regulated behavior during aging in zebrafish males and females. Behav Brain Res 2024; 466:115000. [PMID: 38631659 DOI: 10.1016/j.bbr.2024.115000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
The brain serotonin (5-HT) system performs a neurotrophic function and supports the plasticity of the nervous system, while its age-related changes can increase the risk of senile neurodegeneration. Zebrafish brain is highly resistant to damage and neurodegeneration due to its high regeneration potential and it is a promising model object in searching for molecular factors preventing age-related neurodegeneration. In the present study alterations in 5-HT-related behavior in the home tank and the novel tank diving test, as well as 5-HT, 5-HIAA levels, tryptophan hydroxylase (TPH), monoamine oxidase (MAO) activity and the expression of genes encoding TPH, MAO, 5-HT transporter and 5-HT receptors in the brain of 6, 12, 24 and 36 month old zebrafish males and females are investigated. Marked sexual dimorphism in the locomotor activity in the novel tank test is revealed: females of all ages move slower than males. No sexual dimorphism in 5-HT-related traits is observed. No changes in 5-HT and 5-HIAA levels in zebrafish brain during aging is observed. At the same time, the aging is accompanied by a decrease in the locomotor activity, TPH activity, tph2 and htr1aa genes expression as well as an increase in the MAO activity and slc6a4a gene expression in their brain. These results indicate that the brain 5-HT system in zebrafish is resistant to age-related alterations.
Collapse
Affiliation(s)
- Valentina S Evsiukova
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ivan E Sorokin
- Department of Monogenic Forms of Human Common Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Peter A Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander V Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
5
|
Wang X, Yang X, He W, Zhang S, Song X, Zhang J, Ma J, Chen L, Niu P, Chen T. Single-cell transcriptomics analysis of zebrafish brain reveals adverse effects of manganese on neurogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122908. [PMID: 37952916 DOI: 10.1016/j.envpol.2023.122908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Manganese (Mn) is considered as an important environmental risk factor for Parkinson's disease. Excessive exposure to Mn can damage various neural cells and affect the neurogenesis, resulting in neurological dysfunction. However, the specific mechanisms of Mn exposure affecting neurogenesis have not been well understood, including compositional changes and heterogeneity of various neural cells. Zebrafish have been successfully used as a neurotoxicity model due to its homology with mammals in several key regions of the brain, as well as its advantages such as small size. We performed single-cell RNA sequencing of zebrafish brains from normal and Mn-exposed groups. Our results suggested that low levels of Mn exposure activated neurogenesis in the zebrafish brain, including promoting the proliferation of neural progenitor cells and differentiation to newborn neurons and oligodendrocytes, while high levels of Mn exposure inhibited neurogenesis and neural function. Mn could affect neurogenesis through specific molecular pathways. In addition, Mn regulated intercellular communication and affected cellular communication in neural cells through specific signaling pathways. Taken together, our study elucidates the cellular composition of the zebrafish brain and adds to the understanding of the mechanisms involved in Mn-induced neurogenesis damage.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shixuan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Song
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junrou Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Tayran H, Yilmaz E, Bhattarai P, Min Y, Wang X, Ma Y, Nelson N, Kassara N, Cosacak MI, Dogru RM, Reyes-Dumeyer D, Reddy JS, Qiao M, Flaherty D, Teich AF, Gunasekaran TI, Yang Z, Tosto G, Vardarajan BN, İş Ö, Ertekin-Taner N, Mayeux R, Kizil C. ABCA7-dependent Neuropeptide-Y signalling is a resilience mechanism required for synaptic integrity in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573893. [PMID: 38260408 PMCID: PMC10802315 DOI: 10.1101/2024.01.02.573893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aβ42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience. Abstract Figure
Collapse
|
7
|
Siddiqui T, Cosacak MI, Popova S, Bhattarai P, Yilmaz E, Lee AJ, Min Y, Wang X, Allen M, İş Ö, Atasavum ZT, Rodriguez-Muela N, Vardarajan BN, Flaherty D, Teich AF, Santa-Maria I, Freudenberg U, Werner C, Tosto G, Mayeux R, Ertekin-Taner N, Kizil C. Nerve growth factor receptor (Ngfr) induces neurogenic plasticity by suppressing reactive astroglial Lcn2/Slc22a17 signaling in Alzheimer's disease. NPJ Regen Med 2023; 8:33. [PMID: 37429840 DOI: 10.1038/s41536-023-00311-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Neurogenesis, crucial for brain resilience, is reduced in Alzheimer's disease (AD) that induces astroglial reactivity at the expense of the pro-neurogenic potential, and restoring neurogenesis could counteract neurodegenerative pathology. However, the molecular mechanisms promoting pro-neurogenic astroglial fate despite AD pathology are unknown. In this study, we used APP/PS1dE9 mouse model and induced Nerve growth factor receptor (Ngfr) expression in the hippocampus. Ngfr, which promotes neurogenic fate of astroglia during the amyloid pathology-induced neuroregeneration in zebrafish brain, stimulated proliferative and neurogenic outcomes. Histological analyses of the changes in proliferation and neurogenesis, single-cell transcriptomics, spatial proteomics, and functional knockdown studies showed that the induced expression of Ngfr reduced the reactive astrocyte marker Lipocalin-2 (Lcn2), which we found was sufficient to reduce neurogenesis in astroglia. Anti-neurogenic effects of Lcn2 was mediated by Slc22a17, blockage of which recapitulated the pro-neurogenicity by Ngfr. Long-term Ngfr expression reduced amyloid plaques and Tau phosphorylation. Postmortem human AD hippocampi and 3D human astroglial cultures showed elevated LCN2 levels correlate with reactive gliosis and reduced neurogenesis. Comparing transcriptional changes in mouse, zebrafish, and human AD brains for cell intrinsic differential gene expression and weighted gene co-expression networks revealed common altered downstream effectors of NGFR signaling, such as PFKP, which can enhance proliferation and neurogenesis in vitro when blocked. Our study suggests that the reactive non-neurogenic astroglia in AD can be coaxed to a pro-neurogenic fate and AD pathology can be alleviated with Ngfr. We suggest that enhancing pro-neurogenic astroglial fate may have therapeutic ramifications in AD.
Collapse
Affiliation(s)
- Tohid Siddiqui
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
| | - Stanislava Popova
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
- Neuron D GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Elanur Yilmaz
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Annie J Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Yuhao Min
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Zeynep Tansu Atasavum
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
| | - Badri N Vardarajan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Delaney Flaherty
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Andrew F Teich
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Edificio E, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Uwe Freudenberg
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, D-01307, Dresden, Germany
| | - Giuseppe Tosto
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany.
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
8
|
Lee AJ, Raghavan NS, Bhattarai P, Siddiqui T, Sariya S, Reyes-Dumeyer D, Flowers XE, Cardoso SAL, De Jager PL, Bennett DA, Schneider JA, Menon V, Wang Y, Lantigua RA, Medrano M, Rivera D, Jiménez-Velázquez IZ, Kukull WA, Brickman AM, Manly JJ, Tosto G, Kizil C, Vardarajan BN, Mayeux R. FMNL2 regulates gliovascular interactions and is associated with vascular risk factors and cerebrovascular pathology in Alzheimer's disease. Acta Neuropathol 2022; 144:59-79. [PMID: 35608697 PMCID: PMC9217776 DOI: 10.1007/s00401-022-02431-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) has been associated with cardiovascular and cerebrovascular risk factors (CVRFs) during middle age and later and is frequently accompanied by cerebrovascular pathology at death. An interaction between CVRFs and genetic variants might explain the pathogenesis. Genome-wide, gene by CVRF interaction analyses for AD, in 6568 patients and 8101 controls identified FMNL2 (p = 6.6 × 10-7). A significant increase in FMNL2 expression was observed in the brains of patients with brain infarcts and AD pathology and was associated with amyloid and phosphorylated tau deposition. FMNL2 was also prominent in astroglia in AD among those with cerebrovascular pathology. Amyloid toxicity in zebrafish increased fmnl2a expression in astroglia with detachment of astroglial end feet from blood vessels. Knockdown of fmnl2a prevented gliovascular remodeling, reduced microglial activity and enhanced amyloidosis. APP/PS1dE9 AD mice also displayed increased Fmnl2 expression and reduced the gliovascular contacts independent of the gliotic response. Based on this work, we propose that FMNL2 regulates pathology-dependent plasticity of the blood-brain-barrier by controlling gliovascular interactions and stimulating the clearance of extracellular aggregates. Therefore, in AD cerebrovascular risk factors promote cerebrovascular pathology which in turn, interacts with FMNL2 altering the normal astroglial-vascular mechanisms underlying the clearance of amyloid and tau increasing their deposition in brain.
Collapse
Affiliation(s)
- Annie J Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Neha S Raghavan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Prabesh Bhattarai
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tatzberg 41, 01307, Dresden, Germany
| | - Tohid Siddiqui
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tatzberg 41, 01307, Dresden, Germany
| | - Sanjeev Sariya
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Xena E Flowers
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Sarah A L Cardoso
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Philip L De Jager
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Vilas Menon
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Rafael A Lantigua
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Medicine, College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 630 West 168th Street, New York, NY, 10032, USA
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra (PUCMM), Santiago, Dominican Republic
| | - Diones Rivera
- Department of Neurology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
- School of Medicine, Universidad Pedro Henriquez Urena (UNPHU), Santo Domingo, Dominican Republic
| | - Ivonne Z Jiménez-Velázquez
- Department of Medicine, Medical Sciences Campus, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, 00936, USA
| | - Walter A Kukull
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, 98195, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tatzberg 41, 01307, Dresden, Germany
| | - Badri N Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA.
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Kizil C, Sariya S, Kim YA, Rajabli F, Martin E, Reyes-Dumeyer D, Vardarajan B, Maldonado A, Haines JL, Mayeux R, Jiménez-Velázquez IZ, Santa-Maria I, Tosto G. Admixture Mapping of Alzheimer's disease in Caribbean Hispanics identifies a new locus on 22q13.1. Mol Psychiatry 2022; 27:2813-2820. [PMID: 35365809 PMCID: PMC9167722 DOI: 10.1038/s41380-022-01526-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Late-onset Alzheimer's disease (LOAD) is significantly more frequent in Hispanics than in non-Hispanic Whites. Ancestry may explain these differences across ethnic groups. To this end, we studied a large cohort of Caribbean Hispanics (CH, N = 8813) and tested the association between Local Ancestry (LA) and LOAD ("admixture mapping") to identify LOAD-associated ancestral blocks, separately for ancestral components (European [EUR], African [AFR], Native American[NA]) and jointly (AFR + NA). Ancestral blocks significant after permutation were fine-mapped employing multi-ethnic whole-exome sequencing (WES) to identify rare variants associated with LOAD (SKAT-O) and replicated in the UK Biobank WES dataset. Candidate genes were validated studying (A) protein expression in human LOAD and control brains; (B) two animal AD models, Drosophila and Zebrafish. In the joint AFR + NA model, we identified four significant ancestral blocks located on chromosomes 1 (p value = 8.94E-05), 6 (p value = 8.63E-05), 21 (p value = 4.64E-05) and 22 (p value = 1.77E-05). Fine-mapping prioritized the GCAT gene on chromosome 22 (SKAT-O p value = 3.45E-05) and replicated in the UK Biobank (SKAT-O p value = 0.05). In LOAD brains, a decrease of 28% in GCAT protein expression was observed (p value = 0.038), and GCAT knockdown in Amyloid-β42 Drosophila exacerbated rough eye phenotype (68% increase, p value = 4.84E-09). In zebrafish, gcat expression increased after acute amyloidosis (34%, p value = 0.0049), and decreased upon anti-inflammatory Interleukin-4 (39%, p value = 2.3E-05). Admixture mapping uncovered genomic regions harboring new LOAD-associated loci that might explain the observed different frequency of LOAD across ethnic groups. Our results suggest that the inflammation-related activity of GCAT is a response to amyloid toxicity, and reduced GCAT expression exacerbates AD pathology.
Collapse
Affiliation(s)
- Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tatzberg 41, 01307, Dresden, Germany
| | - Sanjeev Sariya
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Eden Martin
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Aleyda Maldonado
- Department of Medicine, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| | - Jonathan L Haines
- Department of Population & Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Medicine, College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 630 West 168th Street, New York, NY, 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Ivonne Z Jiménez-Velázquez
- Department of Medicine, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA.
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA.
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Single Cell/Nucleus Transcriptomics Comparison in Zebrafish and Humans Reveals Common and Distinct Molecular Responses to Alzheimer’s Disease. Cells 2022; 11:cells11111807. [PMID: 35681503 PMCID: PMC9180693 DOI: 10.3390/cells11111807] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/21/2022] Open
Abstract
Neurogenesis is significantly reduced in Alzheimer’s disease (AD) and is a potential therapeutic target. Contrary to humans, a zebrafish can regenerate its diseased brain, and thus is ideal for studying neurogenesis. To compare the AD-related molecular pathways between humans and zebrafish, we compared single cell or nuclear transcriptomic data from a zebrafish amyloid toxicity model and its controls (N = 12) with the datasets of two human adult brains (N = 10 and N = 48 (Microglia)), and one fetal brain (N = 10). Approximately 95.4% of the human and zebrafish cells co-clustered. Within each cell type, we identified differentially expressed genes (DEGs), enriched KEGG pathways, and gene ontology terms. We studied synergistic and non-synergistic DEGs to point at either common or uniquely altered mechanisms across species. Using the top DEGs, a high concordance in gene expression changes between species was observed in neuronal clusters. On the other hand, the molecular pathways affected by AD in zebrafish astroglia differed from humans in favor of the neurogenic pathways. The integration of zebrafish and human transcriptomes shows that the zebrafish can be used as a tool to study the cellular response to amyloid proteinopathies. Uniquely altered pathways in zebrafish could highlight the specific mechanisms underlying neurogenesis, which are absent in humans, and could serve as potential candidates for therapeutic developments.
Collapse
|
11
|
Siddiqui T, Bhattarai P, Popova S, Cosacak MI, Sariya S, Zhang Y, Mayeux R, Tosto G, Kizil C. KYNA/Ahr Signaling Suppresses Neural Stem Cell Plasticity and Neurogenesis in Adult Zebrafish Model of Alzheimer's Disease. Cells 2021; 10:2748. [PMID: 34685728 PMCID: PMC8534484 DOI: 10.3390/cells10102748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Neurogenesis decreases in Alzheimer's disease (AD) patients, suggesting that restoring the normal neurogenic response could be a disease modifying intervention. To study the mechanisms of pathology-induced neuro-regeneration in vertebrate brains, zebrafish is an excellent model due to its extensive neural regeneration capacity. Here, we report that Kynurenic acid (KYNA), a metabolite of the amino acid tryptophan, negatively regulates neural stem cell (NSC) plasticity in adult zebrafish brain through its receptor, aryl hydrocarbon receptor 2 (Ahr2). The production of KYNA is suppressed after amyloid-toxicity through reduction of the levels of Kynurenine amino transferase 2 (KAT2), the key enzyme producing KYNA. NSC proliferation is enhanced by an antagonist for Ahr2 and is reduced with Ahr2 agonists or KYNA. A subset of Ahr2-expressing zebrafish NSCs do not express other regulatory receptors such as il4r or ngfra, indicating that ahr2-positive NSCs constitute a new subset of neural progenitors that are responsive to amyloid-toxicity. By performing transcriptome-wide association studies (TWAS) in three late onset Alzheimer disease (LOAD) brain autopsy cohorts, we also found that several genes that are components of KYNA metabolism or AHR signaling are differentially expressed in LOAD, suggesting a strong link between KYNA/Ahr2 signaling axis to neurogenesis in LOAD.
Collapse
Affiliation(s)
- Tohid Siddiqui
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany; (T.S.); (P.B.); (S.P.); (M.I.C.)
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany; (T.S.); (P.B.); (S.P.); (M.I.C.)
| | - Stanislava Popova
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany; (T.S.); (P.B.); (S.P.); (M.I.C.)
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany; (T.S.); (P.B.); (S.P.); (M.I.C.)
| | - Sanjeev Sariya
- The Department of Neurology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; (S.S.); (R.M.); (G.T.)
| | - Yixin Zhang
- B-CUBE, Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany;
| | - Richard Mayeux
- The Department of Neurology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; (S.S.); (R.M.); (G.T.)
| | - Giuseppe Tosto
- The Department of Neurology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; (S.S.); (R.M.); (G.T.)
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany; (T.S.); (P.B.); (S.P.); (M.I.C.)
- The Department of Neurology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; (S.S.); (R.M.); (G.T.)
| |
Collapse
|
12
|
Palumbo F, Serneels B, Yaksi E. Optimized protocol for conditioned place avoidance learning in juvenile zebrafish. STAR Protoc 2021; 2:100465. [PMID: 33912851 PMCID: PMC8065339 DOI: 10.1016/j.xpro.2021.100465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Conditioned place avoidance assays are broadly used in mammals to study different cognitive aspects of operant learning. Here, we introduce a series of experimental designs for training juvenile zebrafish in short-term and long-term conditioned place avoidance assays. Our goal is to promote standardization of animal handling procedures and setup conditions to improve animal welfare and reproducibility while studying operant learning behaviors in juvenile zebrafish. For complete details on the use and execution of this protocol, please refer to Palumbo et al. (2020). We describe juvenile zebrafish handling procedures for operant learning behavior We detail experimental designs for short- and long-term learning We introduce potential pitfalls for chemogenetic ablation of neurons We highlight the importance of animal welfare for successful learning performance
Collapse
Affiliation(s)
- Fabrizio Palumbo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Bram Serneels
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| |
Collapse
|
13
|
Jurisch-Yaksi N, Yaksi E, Kizil C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020; 68:2451-2470. [PMID: 32476207 DOI: 10.1002/glia.23849] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Abstract
The neuroscience community has witnessed a tremendous expansion of glia research. Glial cells are now on center stage with leading roles in the development, maturation, and physiology of brain circuits. Over the course of evolution, glia have highly diversified and include the radial glia, astroglia or astrocytes, microglia, oligodendrocytes, and ependymal cells, each having dedicated functions in the brain. The zebrafish, a small teleost fish, is no exception to this and recent evidences point to evolutionarily conserved roles for glia in the development and physiology of its nervous system. Due to its small size, transparency, and genetic amenability, the zebrafish has become an increasingly prominent animal model for brain research. It has enabled the study of neural circuits from individual cells to entire brains, with a precision unmatched in other vertebrate models. Moreover, its high neurogenic and regenerative potential has attracted a lot of attention from the research community focusing on neural stem cells and neurodegenerative diseases. Hence, studies using zebrafish have the potential to provide fundamental insights about brain development and function, and also elucidate neural and molecular mechanisms of neurological diseases. We will discuss here recent discoveries on the diverse roles of radial glia and astroglia in neurogenesis, in modulating neuronal activity and in regulating brain homeostasis at the brain barriers. By comparing insights made in various animal models, particularly mammals and zebrafish, our goal is to highlight the similarities and differences in glia biology among species, which could set new paradigms relevant to humans.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany.,Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| |
Collapse
|
14
|
Erbaba B, Burhan ÖP, Şerifoğlu N, Muratoğlu B, Kahveci F, Adams MM, Arslan-Ergül A. Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. Neurobiol Aging 2020; 94:164-175. [PMID: 32629311 DOI: 10.1016/j.neurobiolaging.2020.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/27/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022]
Abstract
Brain aging is a complex process, which involves multiple pathways including various components from cellular to molecular. This study aimed to investigate the gene expression changes in zebrafish brains through young-adult to adult, and adult to old age. RNA sequencing was performed on isolated neuronal cells from zebrafish brains. The cells were enriched in progenitor cell markers, which are known to diminish throughout the aging process. We found 176 statistically significant, differentially expressed genes among the groups, and identified a group of genes based on gene ontology descriptions, which were classified as cell adhesion molecules. The relevance of these genes was further tested in another set of zebrafish brains, human healthy, and Alzheimer's disease brain samples, as well as in Allen Brain Atlas data. We observed that the expression change of 2 genes, GJC2 and ALCAM, during the aging process was consistent in all experimental sets. Our findings provide a new set of markers for healthy brain aging and suggest new targets for therapeutic approaches to neurodegenerative diseases.
Collapse
Affiliation(s)
- Begün Erbaba
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Özge Pelin Burhan
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Naz Şerifoğlu
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; Stem Cell Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Bihter Muratoğlu
- Stem Cell Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Fatma Kahveci
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey; UMRAM, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
| | - Ayça Arslan-Ergül
- Stem Cell Research and Application Center, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
15
|
Mashkaryan V, Siddiqui T, Popova S, Cosacak MI, Bhattarai P, Brandt K, Govindarajan N, Petzold A, Reinhardt S, Dahl A, Lefort R, Kizil C. Type 1 Interleukin-4 Signaling Obliterates Mouse Astroglia in vivo but Not in vitro. Front Cell Dev Biol 2020; 8:114. [PMID: 32181251 PMCID: PMC7057913 DOI: 10.3389/fcell.2020.00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Recent findings suggest that reduced neurogenesis could be one of the underlying reasons for the exacerbated neuropathology in humans, thus restoring the neural stem cell proliferation and neurogenesis could help to circumvent some pathological aspects of Alzheimer’s disease. We recently identified Interleukin-4/STAT6 signaling as a neuron–glia crosstalk mechanism that enables glial proliferation and neurogenesis in adult zebrafish brain and 3D cultures of human astroglia, which manifest neurogenic properties. In this study, by using single cell sequencing in the APP/PS1dE9 mouse model of AD, we found that IL4 receptor (Il4r) is not expressed in mouse astroglia and IL4 signaling is not active in these cells. We tested whether activating IL4/STAT6 signaling would enhance cell proliferation and neurogenesis in healthy and disease conditions. Lentivirus-mediated expression of IL4R or constitutively active STAT6VT impaired the survival capacity of mouse astroglia in vivo but not in vitro. These results suggest that the adult mouse brain generates a non-permissive environment that dictates a negative effect of IL4 signaling on astroglial survival and neurogenic properties in contrast to zebrafish brains and in vitro mammalian cell cultures. Our findings that IL4R signaling in dentate gyrus (DG) of adult mouse brain impinges on the survival of DG cells implicate an evolutionary mechanism that might underlie the loss of neuroregenerative ability of the brain, which might be utilized for basic and clinical aspects for neurodegenerative diseases.
Collapse
Affiliation(s)
- Violeta Mashkaryan
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Tohid Siddiqui
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Stanislava Popova
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Kerstin Brandt
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Nambirajan Govindarajan
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Roger Lefort
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| |
Collapse
|
16
|
Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol 2020; 18:e3000585. [PMID: 31905199 PMCID: PMC6964913 DOI: 10.1371/journal.pbio.3000585] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/16/2020] [Accepted: 12/12/2019] [Indexed: 11/23/2022] Open
Abstract
It was recently suggested that supplying the brain with new neurons could counteract Alzheimer’s disease (AD). This provocative idea requires further testing in experimental models in which the molecular basis of disease-induced neuronal regeneration could be investigated. We previously found that zebrafish stimulates neural stem cell (NSC) plasticity and neurogenesis in AD and could help to understand the mechanisms to be harnessed for developing new neurons in diseased mammalian brains. Here, by performing single-cell transcriptomics, we found that amyloid toxicity-induced interleukin-4 (IL4) promotes NSC proliferation and neurogenesis by suppressing the tryptophan metabolism and reducing the production of serotonin. NSC proliferation was suppressed by serotonin via down-regulation of brain-derived neurotrophic factor (BDNF)-expression in serotonin-responsive periventricular neurons. BDNF enhances NSC plasticity and neurogenesis via nerve growth factor receptor A (NGFRA)/ nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFkB) signaling in zebrafish but not in rodents. Collectively, our results suggest a complex neuron-glia interaction that regulates regenerative neurogenesis after AD conditions in zebrafish. Can regeneration of lost neurons counteract neurodegenerative disease? This study shows that serotonergic neurons alter neural stem cell proliferation and neurogenesis via a complex neuron-glia interaction involving interleukin-4, BDNF and NGF receptor in a zebrafish model of Alzheimer's disease.
Collapse
|
17
|
Cosacak MI, Bhattarai P, Reinhardt S, Petzold A, Dahl A, Zhang Y, Kizil C. Single-Cell Transcriptomics Analyses of Neural Stem Cell Heterogeneity and Contextual Plasticity in a Zebrafish Brain Model of Amyloid Toxicity. Cell Rep 2019; 27:1307-1318.e3. [DOI: 10.1016/j.celrep.2019.03.090] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023] Open
|
18
|
Celikkaya H, Cosacak MI, Papadimitriou C, Popova S, Bhattarai P, Biswas SN, Siddiqui T, Wistorf S, Nevado-Alcalde I, Naumann L, Mashkaryan V, Brandt K, Freudenberg U, Werner C, Kizil C. GATA3 Promotes the Neural Progenitor State but Not Neurogenesis in 3D Traumatic Injury Model of Primary Human Cortical Astrocytes. Front Cell Neurosci 2019; 13:23. [PMID: 30809125 PMCID: PMC6380212 DOI: 10.3389/fncel.2019.00023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/18/2019] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are abundant cell types in the vertebrate central nervous system and can act as neural stem cells in specialized niches where they constitutively generate new neurons. Outside the stem cell niches, however, these glial cells are not neurogenic. Although injuries in the mammalian central nervous system lead to profound proliferation of astrocytes, which cluster at the lesion site to form a gliotic scar, neurogenesis does not take place. Therefore, a plausible regenerative therapeutic option is to coax the endogenous reactive astrocytes to a pre-neurogenic progenitor state and use them as an endogenous reservoir for repair. However, little is known on the mechanisms that promote the neural progenitor state after injuries in humans. Gata3 was previously found to be a mechanism that zebrafish brain uses to injury-dependent induction of neural progenitors. However, the effects of GATA3 in human astrocytes after injury are not known. Therefore, in this report, we investigated how overexpression of GATA3 in primary human astrocytes would affect the neurogenic potential before and after injury in 2D and 3D cultures. We found that primary human astrocytes are unable to induce GATA3 after injury. Lentivirus-mediated overexpression of GATA3 significantly increased the number of GFAP/SOX2 double positive astrocytes and expression of pro-neural factor ASCL1, but failed to induce neurogenesis, suggesting that GATA3 is required for enhancing the neurogenic potential of primary human astrocytes and is not sufficient to induce neurogenesis alone.
Collapse
Affiliation(s)
- Hilal Celikkaya
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | | | - Stanislava Popova
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | - Srijeeta Nag Biswas
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Tohid Siddiqui
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | - Sabrina Wistorf
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | - Isabel Nevado-Alcalde
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | - Lisa Naumann
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | - Violeta Mashkaryan
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Kerstin Brandt
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany
| | - Uwe Freudenberg
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany.,Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Carsten Werner
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany.,Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
19
|
Kizil C, Bhattarai P. Is Alzheimer's Also a Stem Cell Disease? - The Zebrafish Perspective. Front Cell Dev Biol 2018; 6:159. [PMID: 30533414 PMCID: PMC6265475 DOI: 10.3389/fcell.2018.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is the leading form of dementia. AD entails chronic inflammation, impaired synaptic integrity and reduced neurogenesis. The clinical and molecular onsets of the disease do not temporally overlap and the initiation phase of the cellular changes might start with a complex causativeness between chronic inflammation, reduced neural stem cell plasticity and neurogenesis. Although the immune and neuronal aspects in AD are well studied, the neural stem cell-related features are far less investigated. An intriguing question is, therefore, whether a stem cell can ever be made proliferative and neurogenic during the prevalent AD in the brain. Recent findings affirm this hypothesis and thus a plausible way to circumvent the AD phenotypes could be to mobilize the endogenous stem cells by enhancing their proliferative and neurogenic capacity as well as to provide the newborn neurons the potential to survive and integrate into the existing circuitry. To address these questions, zebrafish offers unprecedented information and tools, which can be effectively translated into mammalian experimental systems.
Collapse
Affiliation(s)
- Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|