1
|
Xu H, Zheng W, Zhang Y, Zhao D, Wang L, Zhao Y, Wang W, Yuan Y, Zhang J, Huo Z, Wang Y, Zhao N, Qin Y, Liu K, Xi R, Chen G, Zhang H, Tang C, Yan J, Ge Q, Cheng H, Lu Y, Gao L. A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation. Nat Commun 2023; 14:7769. [PMID: 38012169 PMCID: PMC10682047 DOI: 10.1038/s41467-023-43664-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Post-surgical treatments of the human throat often require continuous monitoring of diverse vital and muscle activities. However, wireless, continuous monitoring and analysis of these activities directly from the throat skin have not been developed. Here, we report the design and validation of a fully integrated standalone stretchable device platform that provides wireless measurements and machine learning-based analysis of diverse vibrations and muscle electrical activities from the throat. We demonstrate that the modified composite hydrogel with low contact impedance and reduced adhesion provides high-quality long-term monitoring of local muscle electrical signals. We show that the integrated triaxial broad-band accelerometer also measures large body movements and subtle physiological activities/vibrations. We find that the combined data processed by a 2D-like sequential feature extractor with fully connected neurons facilitates the classification of various motion/speech features at a high accuracy of over 90%, which adapts to the data with noise from motion artifacts or the data from new human subjects. The resulting standalone stretchable device with wireless monitoring and machine learning-based processing capabilities paves the way to design and apply wearable skin-interfaced systems for the remote monitoring and treatment evaluation of various diseases.
Collapse
Affiliation(s)
- Hongcheng Xu
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Weihao Zheng
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Yang Zhang
- Department of Medical Electronics, School of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China
| | - Daqing Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Lu Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China.
| | - Yangbo Yuan
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Ji Zhang
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Zimin Huo
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Yuejiao Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Ningjuan Zhao
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Yuxin Qin
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Ke Liu
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Ruida Xi
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Gang Chen
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Haiyan Zhang
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Junyu Yan
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, Hong Kong SAR.
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Affiliation(s)
- M Payne
- John E. Morley, MB,BCh, Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd., M238, St. Louis, MO 63104,
| | | |
Collapse
|
3
|
Essa H, Vasant DH, Raginis-Zborowska A, Payton A, Michou E, Hamdy S. The BDNF polymorphism Val66Met may be predictive of swallowing improvement post pharyngeal electrical stimulation in dysphagic stroke patients. Neurogastroenterol Motil 2017; 29. [PMID: 28317287 DOI: 10.1111/nmo.13062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The aim of this study was to explore the effect of brain-derived neurotrophic factor (BDNF) polymorphism rs6265 (Val66Met) in both "natural" and treatment induced recovery of swallowing after dysphagic stroke. METHODS Sixteen dysphagic stroke patients that completed a single-blind randomized sham controlled trial of pharyngeal electrical stimulation (PES) within 6 weeks of their stroke (N=38), were genotyped for the BDNF SNP Val66Met (rs6265) from saliva samples. These patients received active or sham PES according to randomized allocation. PES was delivered at a set frequency (5 Hz), intensity (75% of maximal tolerated), and duration (10 minutes) once a day for three consecutive days. Clinical measurements were taken from patients at baseline, 2 weeks and 3 months post entering the study. Changes in swallowing ability based on the dysphagia severity rating scale (DSRS) were compared between active and sham groups and associated with BDNF SNP status. KEY RESULTS In the active stimulation group, patients with the Met BDNF allele demonstrated significantly greater improvements in DSRS at 3 months compared to patients homozygous for the Val allele (P=.009). By comparison, there were no significant associations at the 2 week stage in either the active or sham group, or at 3 month in the sham group. Functional scores including the Barthel Index and modified Rankin scale were also unaffected by BDNF status. CONCLUSIONS & INFERENCES Our findings suggest an association between BDNF and stimulation induced swallowing recovery. Further work will be required to validate these observations and demonstrate clinical utility in patients.
Collapse
Affiliation(s)
- H Essa
- University of Manchester, Division of Diabetes, Endocrinology and Gastroenterology, Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - D H Vasant
- University of Manchester, Division of Diabetes, Endocrinology and Gastroenterology, Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - A Raginis-Zborowska
- University of Manchester, Division of Diabetes, Endocrinology and Gastroenterology, Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - A Payton
- University of Manchester, Division of Diabetes, Endocrinology and Gastroenterology, Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,School of Health Sciences, Division of Human Communication, Development & Hearing, The University of Manchester, Manchester, UK
| | - E Michou
- University of Manchester, Division of Diabetes, Endocrinology and Gastroenterology, Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - S Hamdy
- University of Manchester, Division of Diabetes, Endocrinology and Gastroenterology, Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|