1
|
Abderrrezag N, Domínguez-Rodríguez G, Montero L, Mendiola JA. Nutraceutical potential of Mediterranean agri-food waste and wild plants: Green extraction and bioactive characterization. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 114:1-95. [PMID: 40155083 DOI: 10.1016/bs.afnr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The agricultural waste and wild plants of the Mediterranean region offer significant nutraceutical potential, rich in bioactive compounds such as phenolics, carotenoids, lipids and volatile organic compounds. These compounds exhibit health-promoting properties, including antioxidant, neuroprotective and anti-inflammatory effects. Advanced analytical techniques such as HPLC, GC-MS and NMR are essential for the accurate chemical characterization of these bioactives. Green extraction methods, including ultrasound-assisted, enzyme-assisted and cold plasma-assisted extractions, provide efficient and environmentally friendly alternatives to classical techniques for the isolation of bioactive compounds. The valorization of Mediterranean agricultural by-products, such as olive pomace, grape seeds, and citrus peels, exemplifies sustainable approaches to the utilization of these underutilized resources. This chapter explores the bioactive characterization and green extraction methods that contribute to unlocking the nutraceutical potential of Mediterranean plant waste and wild plants, highlighting their role in the development of functional foods and natural health products.
Collapse
Affiliation(s)
- Norelhouda Abderrrezag
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain; Laboratory of Environmental Processes Engineering, University of Salah Boubnider Constantine 3, Constantine, Algeria
| | - Gloria Domínguez-Rodríguez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain; Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Alcalá de Henares, Madrid, Spain
| | - Lidia Montero
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain.
| | - Jose A Mendiola
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain.
| |
Collapse
|
2
|
Borrmann K, Troschel FM, Brücksken KA, Espinoza-Sánchez NA, Rezaei M, Eder KM, Kemper B, Eich HT, Greve B. Antioxidants Hydroxytyrosol and Thioredoxin-Mimetic Peptide CB3 Protect Irradiated Normal Tissue Cells. Antioxidants (Basel) 2024; 13:961. [PMID: 39199207 PMCID: PMC11351936 DOI: 10.3390/antiox13080961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Reducing side effects in non-cancerous tissue is a key aim of modern radiotherapy. Here, we assessed whether the use of the antioxidants hydroxytyrosol (HT) and thioredoxin-mimetic peptide CB3 (TMP) attenuated radiation-induced normal tissue toxicity in vitro. We used primary human umbilical vein endothelial cells (HUVECs) and human epidermal keratinocytes (HaCaT) as normal tissue models. Cells were treated with HT and TMP 24 h or immediately prior to irradiation. Reactive oxygen species (ROS) were assessed via luminescent- and fluorescence-based assays, migration was investigated using digital holographic microscopy, and clonogenic survival was quantified by colony formation assays. Angiogenesis and wound healing were evaluated via time-dependent microscopy. Secreted cytokines were validated in quantitative polymerase chain reaction (qPCR) studies. Treatment with HT or TMP was well tolerated by cells. The application of either antioxidant before irradiation resulted in reduced ROS formation and a distinct decrease in cytokines compared to similarly irradiated, but otherwise untreated, controls. Antioxidant treatment also increased post-radiogenic migration and angiogenesis while accelerating wound healing. HT or TMP treatment immediately before radiotherapy increased clonogenic survival after radiotherapy, while treatment 24 h before radiotherapy enhanced baseline proliferation. Both antioxidants may decrease radiation-induced normal tissue toxicity and deserve further pre-clinical investigation.
Collapse
Affiliation(s)
- Katrin Borrmann
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| | | | | | - Nancy Adriana Espinoza-Sánchez
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149 Münster, Germany
| | - Maryam Rezaei
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Kai Moritz Eder
- Biomedical Technology Center, Medical Faculty, University of Münster, 48149 Münster, Germany (B.K.)
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, 48149 Münster, Germany (B.K.)
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
3
|
Chen Y, Zheng Y, Wen X, Huang J, Song Y, Cui Y, Xie X. Anti-inflammatory effects of Olive (olea europaea L.) fruit extract in LPS-stimulated RAW264.7 cells via MAPK and NF-κB signal pathways. Mol Biol Rep 2024; 51:774. [PMID: 38904794 DOI: 10.1007/s11033-024-09661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Olive is an evergreen tree of Oleaceae Olea with numerous bioactive components. While the anti-inflammatory properties of olive oil and the derivatives are well-documented, there remains a dearth of in-depth researches on the immunosuppressive effects of olive fruit water extract. This study aimed to elucidate the dose-effect relationship and underlying molecular mechanisms of olive fruit extract in mediating anti-inflammatory responses. METHODS AND RESULTS The impacts of olive fruit extract on the release of nitric oxide (NO), tumor necrosis factor (TNF-α), interleukins-6 (IL-6) and reactive oxygen species (ROS) were assessed in RAW264.7 cells induced by lipopolysaccharide (LPS). For deeper understanding, the expression of genes encoding inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α and IL-6 was quantitatively tested. Additionally, the expression patterns of MAPK and NF-κB pathways were further observed to analyze the action mechanisms. Results suggested that olive fruit extract (200, 500, 1000 µg/mL) markedly exhibited a dose-dependent reduction in the generation of NO, TNF-α, IL-6 and ROS, as well as the expression of correlative genes studied. The activation of ERK, JNK, p38, IκB-α and p65 were all suppressed when p65 nuclear translocation was further restricted by olive fruit extract in NF-κB and MAPK signal pathways. CONCLUSIONS Olive fruit extract targeted imposing restrictions on the signal transduction of key proteins in NF-κB and MAPK pathways, and thereby lowered the level of inflammatory mediators, which put an enormous hindrance to inflammatory development. Accordingly, it is reasonable to consider olive fruit as a potent ingredient in immunomodulatory products.
Collapse
Affiliation(s)
- Yiwen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - Yali Zheng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - Xia Wen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - Jiancong Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - Yafeng Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yinhua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China.
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
4
|
Zhao H, Chen Z, Kang X, Yang B, Luo P, Li H, He Q. The frontline of alternatives to animal testing: novel in vitro skin model application in drug development and evaluation. Toxicol Sci 2023; 196:152-169. [PMID: 37702017 DOI: 10.1093/toxsci/kfad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The FDA Modernization Act 2.0 has brought nonclinical drug evaluation into a new era. In vitro models are widely used and play an important role in modern drug development and evaluation, including early candidate drug screening and preclinical drug efficacy and toxicity assessment. Driven by regulatory steering and facilitated by well-defined physiology, novel in vitro skin models are emerging rapidly, becoming the most advanced area in alternative testing research. The revolutionary technologies bring us many in vitro skin models, either laboratory-developed or commercially available, which were all built to emulate the structure of the natural skin to recapitulate the skin's physiological function and particular skin pathology. During the model development, how to achieve balance among complexity, accessibility, capability, and cost-effectiveness remains the core challenge for researchers. This review attempts to introduce the existing in vitro skin models, align them on different dimensions, such as structural complexity, functional maturity, and screening throughput, and provide an update on their current application in various scenarios within the scope of chemical testing and drug development, including testing in genotoxicity, phototoxicity, skin sensitization, corrosion/irritation. Overall, the review will summarize a general strategy for in vitro skin model to enhance future model invention, application, and translation in drug development and evaluation.
Collapse
Affiliation(s)
- He Zhao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaozeng Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Xingchen Kang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
5
|
Di Renzo L, Smeriglio A, Ingegneri M, Gualtieri P, Trombetta D. The Pharmaceutical Formulation Plays a Pivotal Role in Hydroxytyrosol Pharmacokinetics. Pharmaceutics 2023; 15:pharmaceutics15030743. [PMID: 36986604 PMCID: PMC10059125 DOI: 10.3390/pharmaceutics15030743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Current evidence supports the use of extra virgin olive oil (EVOO) and its minor components such as hydroxytyrosol or 3,4-dihydroxyphenyl ethanol (DOPET), to improve cardiovascular and metabolic health. Nevertheless, more intervention studies in humans are needed because some gaps remain in its bioavailability and metabolism. The aim of this study was to investigate the DOPET pharmacokinetics on 20 healthy volunteers by administering a hard enteric-coated capsule containing 7.5 mg of bioactive compound conveyed in EVOO. The treatment was preceded by a washout period with a polyphenol and an alcohol-free diet. Blood and urine samples were collected at baseline and different time points, and free DOPET and metabolites, as well as sulfo- and glucuro-conjugates, were quantified by LC-DAD-ESI-MS/MS analysis. The plasma concentration versus time profiles of free DOPET was analyzed by a non-compartmental approach, and several pharmacokinetic parameters (Cmax, Tmax, T1/2, AUC0–440 min, AUC0–∞, AUCt–∞, AUCextrap_pred, Clast and Kel) were calculated. Results showed that DOPET Cmax (5.5 ng/mL) was reached after 123 min (Tmax), with a T1/2 of 150.53 min. Comparing the data obtained with the literature, the bioavailability of this bioactive compound is about 2.5 times higher, confirming the hypothesis that the pharmaceutical formulation plays a pivotal role in the bioavailability and pharmacokinetics of hydroxytyrosol.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-0906765630
| | - Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
6
|
Exploring Olive Pomace for Skincare Applications: A Review. COSMETICS 2023. [DOI: 10.3390/cosmetics10010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The cosmetic industry is continuously searching for new active ingredients in an effort to attend to consumer demands which, in recent years, are focused on more natural and environmentally friendly products, obtained from sustainable resources. Nevertheless, they are required to provide cosmetologically appealing skincare products, ultimately with the purpose of improving skin appearance. The olive oil industry generates a large amount of liquid and semi-solid by-products such as olive pomace. Their phytotoxicity impairs safe disposal, so valorization strategies that promote by-product reuse are needed, which may include skincare products. Hydroxytyrosol is the main phenolic compound present in olive pomace and possesses biological effects that make it a desirable active compound for cosmetic formulations such as antioxidant and anti-aging activities as well as photoprotector, depigmenting, antimicrobial and anti-inflammatory actions. Other compounds present in olive pomace can also have functional properties and skin-related benefits. However, the application of this by-product can be a challenge in terms of formulation’s design, stability, and proven efficacy, so appropriate methodologies should be used to validate its incorporation and may include extraction and further encapsulation of bioactive compounds in order to achieve effective and aesthetic appealing skincare products.
Collapse
|
7
|
Chen C, Chen L, Zhou J, Cai R, Ye Z, Zhang D. Anti-Psoriasis Activities of Hydroxytyrosol on HaCaT cells under Psoriatic Inflammation in vitro. Immunopharmacol Immunotoxicol 2022; 45:328-333. [DOI: 10.1080/08923973.2022.2143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Caifeng Chen
- Department of Dermatology, Fujian Provincial Hospital, Clinical Medical College of Fujian Medical University, Fujian Fuzhou, China
| | - Li Chen
- Department of Dermatology, Fujian Provincial Hospital, Clinical Medical College of Fujian Medical University, Fujian Fuzhou, China
| | - Jun Zhou
- Department of Dermatology, Fujian Provincial Hospital, Clinical Medical College of Fujian Medical University, Fujian Fuzhou, China
| | - Renhui Cai
- Department of Dermatology, Fujian Provincial Hospital, Clinical Medical College of Fujian Medical University, Fujian Fuzhou, China
| | - Zhenjie Ye
- Department of Dermatology, Fujian Provincial Hospital, Clinical Medical College of Fujian Medical University, Fujian Fuzhou, China
| | - Danqun Zhang
- Department of Dermatology, Fujian Provincial Hospital, Clinical Medical College of Fujian Medical University, Fujian Fuzhou, China
| |
Collapse
|
8
|
Gul U, Khan MI, Madni A, Sohail MF, Rehman M, Rasul A, Peltonen L. Olive oil and clove oil-based nanoemulsion for topical delivery of terbinafine hydrochloride: in vitro and ex vivo evaluation. Drug Deliv 2022; 29:600-612. [PMID: 35174738 PMCID: PMC8856056 DOI: 10.1080/10717544.2022.2039805] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this article, formulation studies for terbinafine hydrochloride nanoemulsions, prepared by high-energy ultrasonication technique, are described. Pseudo-ternary phase diagram was constructed in order to find out the optimal ratios of oil and surfactant/co-solvent mixture for nanoemulsion production. Clove and olive oils were selected as oil phase. Based on the droplet size evaluation, maximum nanoemulsion region were determined for formulation development. Further characterization included polydispersity index (PDI), zeta potential, Fourier transform infrared (FT-IR) spectroscopy, morphology, pH, viscosity, refractive index, ex vivo skin permeation, skin irritation, and histopathological examination. Droplet sizes of optimized formulations were in colloidal range. PDI values below 0.35 indicated considerably homogeneous nanoemulsions. Zeta potential values were from 13.2 to 18.1 mV indicating good stability, which was also confirmed by dispersion stability studies. Ex vivo permeation studies revealed almost total skin permeation of terbinafine hydrochloride from the nanoemulsions (96–98%) in 6 hours whereas commercial product reached only 57% permeation at the same time. Maximum drug amounts were seen in epidermis and dermis layers. Skin irritation and histopathological examination demonstrated dermatologically safe formulations. In conclusion, olive oil and clove oil-based nanoemulsion systems have potential to serve as promising carriers for topical terbinafine hydrochloride delivery.
Collapse
Affiliation(s)
- Uzma Gul
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore, Pakistan
| | - Mubashar Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Leena Peltonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Madureira J, Margaça FMA, Santos-Buelga C, Ferreira ICFR, Verde SC, Barros L. Applications of bioactive compounds extracted from olive industry wastes: A review. Compr Rev Food Sci Food Saf 2021; 21:453-476. [PMID: 34773427 DOI: 10.1111/1541-4337.12861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
The wastes generated during the olive oil extraction process, even if presenting a negative impact for the environment, contain several bioactive compounds that have considerable health benefits. After suitable extraction and purification, these compounds can be used as food antioxidants or as active ingredients in nutraceutical and cosmetic products due to their interesting technological and pharmaceutical properties. The aim of this review, after presenting general applications of the different types of wastes generated from this industry, is to focus on the olive pomace produced by the two-phase system and to explore the challenging applications of the main individual compounds present in this waste. Hydroxytyrosol, tyrosol, oleuropein, oleuropein aglycone, and verbascoside are the most abundant bioactive compounds present in olive pomace. Besides their antioxidant activity, these compounds also demonstrated other biological properties such as antimicrobial, anticancer, or anti-inflammatory, thus being used in formulations to produce pharmaceutical and cosmetic products or in the fortification of food. Nevertheless, it is mandatory to involve both industries and researchers to create strategies to valorize these byproducts while maintaining environmental sustainability.
Collapse
Affiliation(s)
- Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal.,Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.,Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s /n, Salamanca, Spain
| | - Fernanda M A Margaça
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s /n, Salamanca, Spain.,Unidad de Excelencia Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| |
Collapse
|
10
|
Nunes A, Marto J, Gonçalves L, Martins AM, Fraga C, Ribeiro HM. Potential therapeutic of olive oil industry by‐products in skin health: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andreia Nunes
- Faculty of Pharmacy Research Institute for Medicine (iMed.ULisboa) Universidade de Lisboa Lisboa Portugal
| | - Joana Marto
- Faculty of Pharmacy Research Institute for Medicine (iMed.ULisboa) Universidade de Lisboa Lisboa Portugal
| | - Lídia Gonçalves
- Faculty of Pharmacy Research Institute for Medicine (iMed.ULisboa) Universidade de Lisboa Lisboa Portugal
| | - Ana Margarida Martins
- Faculty of Pharmacy Research Institute for Medicine (iMed.ULisboa) Universidade de Lisboa Lisboa Portugal
| | - Carmo Fraga
- Sovena Portugal – Consumer Goods S.A., com sede em Rua Dr. António Borges no 2 Edifício Arquiparque 2 – 3° andar Algés 1495‐131 Portugal
| | - Helena Margarida Ribeiro
- Faculty of Pharmacy Research Institute for Medicine (iMed.ULisboa) Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
11
|
Carrara M, Kelly MT, Roso F, Larroque M, Margout D. Potential of Olive Oil Mill Wastewater as a Source of Polyphenols for the Treatment of Skin Disorders: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7268-7284. [PMID: 34180235 DOI: 10.1021/acs.jafc.1c00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Current trends toward naturally occurring compounds of therapeutic interest have contributed to an increasing number of studies on olive oil phenolics in the treatment of diseases with oxidative and inflammatory origins. Recent focus has been on olive oil wastewater, which is richer in phenolic compounds than olive oil itself. In this review, we present findings demonstrating the potential use of olive mill wastewater in dermatology. Particular attention is given to compounds with proven benefits in topical pharmacology: caffeic and ferulic acids, tyrosol and hydroxytyrosol, verbascoside, and oleuropein. The review is divided into different sections: inflammatory skin diseases, microbial effects, wound healing in addition to the antimelanoma properties of olive mill waste phenolics, and their potential in sun protection agents. There is strong evidence to support further studies into the valorization of this abundant and sustainable source of phenolic compounds for use in dermatology and dermo-cosmetic preparations.
Collapse
Affiliation(s)
- Morgane Carrara
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Mary T Kelly
- Faculté de Pharmacie, Université Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Florence Roso
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Michel Larroque
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Delphine Margout
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| |
Collapse
|
12
|
Leite MN, Viegas JSR, Praça FSG, de Paula NA, Ramalho LNZ, Bentley MVLB, Frade MAC. Ex vivo model of human skin (hOSEC) for assessing the dermatokinetics of the anti-melanoma drug Dacarbazine. Eur J Pharm Sci 2021; 160:105769. [PMID: 33610737 DOI: 10.1016/j.ejps.2021.105769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
Alternative models to replace animals in experimental studies remain a challenge in testing the effectiveness of dermatologic and cosmetic drugs. We proposed a model of human organotypic skin explant culture (hOSEC) to assess the profile of cutaneous drug skin distribution, adopting dacarbazine as a model, and respective new methodologies for dermatokinetic analysis. The viability tests were evaluated in primary keratinocytes and fibroblasts, and skin by MTT and TTC assays, respectively. Then, dacarbazine was applied to the culture medium, and the hOSEC method was applied to verify the dynamics of skin distribution of dacarbazine and determine its dermatokinetic profile. The results of cell and tissue viability showed that both were considered viable. The dermatokinetic results indicated that dacarbazine can be absorbed through the skin, reaching a concentration of 36.36 µg/mL (18,18%) of the initial dose (200 µg/mL) after 12 h in culture. Histological data showed that the skin maintained its structure throughout the tested time that the hOSEC method was applied. No apoptotic cells were observed in the epidermal and dermal layers. No visible changes in the dermo-epidermal junction and no inflammatory processes with the recruitment of defense cells were observed. Hence, these findings suggest that the hOSEC concept as an alternative ex vivo model for assessing the dynamics of skin distribution of drugs, such as dacarbazine, and determining their respective dermatokinetic profiles.
Collapse
Affiliation(s)
- Marcel Nani Leite
- Division of Dermatology - Wound Healing & Hansen's Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Fabíola Silva Garcia Praça
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Natália Aparecida de Paula
- Division of Dermatology - Wound Healing & Hansen's Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Leandra Náira Zambelli Ramalho
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | - Marco Andrey Cipriani Frade
- Division of Dermatology - Wound Healing & Hansen's Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
13
|
Smeriglio A, Toscano G, Denaro M, De Francesco C, Agozzino S, Trombetta D. Nitrogen Headspace Improves the Extra Virgin Olive Oil Shelf-Life, Preserving Its Functional Properties. Antioxidants (Basel) 2019; 8:antiox8090331. [PMID: 31443465 PMCID: PMC6769529 DOI: 10.3390/antiox8090331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
The functional foods field has recently evolved due to new research being carried out in the food area and greater regulations; these factors have contributed to the creation of health claims, and to the increasing attention that consumers give to health-promoting food products. The aim of this research was to improve the shelf-life of a typical functional food of the Mediterranean diet, the Extra Virgin Olive Oil (EVOO). We focused our attention on the standardization and validation of a production process, starting from the cultivation and harvesting of the olives, which would guarantee a product of quality in terms of bioactive compound content. Furthermore, a methodology/procedure to preserve them in the best way over a long period of time, in order to guarantee the consumer receives a product that retains its functional and organoleptic native properties, was evaluated. The monitoring of biological cultivations, harvesting, milling process, and storage, as well as careful quality control of the analytical parameters (e.g., contents of polyphenols, α-tocopherol, fatty acids, acidity, peroxides, dienes, trienes, ΔK, and antioxidant power) showed that, under the same conditions, a nitrogen headspace is a discriminating factor for the maintenance of the functional properties of EVOO.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy.
- Foundation Prof. Antonio Imbesi, University of Messina, P.zza Pugliatti 1, 98122 Messina, Italy.
| | - Giovanni Toscano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Clara De Francesco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
- Foundation Prof. Antonio Imbesi, University of Messina, P.zza Pugliatti 1, 98122 Messina, Italy
| | - Simona Agozzino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| |
Collapse
|