1
|
Camoni N, Conti G, Majorana A, Bardellini E, Salerno C, Wolf TG, Campus G, Cagetti MG. Oral Microbiota of Infants in Maternal Gestational Diabetes: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:421. [PMID: 38671638 PMCID: PMC11049358 DOI: 10.3390/children11040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Gestational diabetes mellitus (GDM) affects approximately 5-20% of pregnant women and is associated with adverse pregnancy outcomes. This review aimed to assess whether the oral microbiota of infants and their mothers with GDM had a different composition from that found in unaffected women and offspring. PubMed, Embase, Scopus, and Google Scholar were searched in December 2023 after protocol registration in the International Prospective Register of Systematic Reviews (CRD42023406505). Risk of bias was assessed using the Joanna Briggs Institute Critical Appraisal tools. Overall, 1113 articles were identified; after evaluating the full texts, 12 papers were included in the qualitative analysis. In six studies of the eight included, significant differences in microbiota between M-GDM and M-nGDM were found. In four studies, a depletion of Firmicutes and an enrichment of Proteobacteria was found in the microbiota of infants. Since all included studies were judged to have high risk of bias, a quantitative synthesis of the results was not carried out. In conclusion, although the oral microbiota of infants from mothers with GDM could be different from that of infants from mothers without GDM, there is insufficient evidence to clarify this aspect so far.
Collapse
Affiliation(s)
- Nicole Camoni
- ASST Valle Olona, Dental Unit, 21052 Gallarate, Italy;
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20112 Milano, Italy
| | - Giulio Conti
- Department of Medicine and Surgery, School of Dentistry, University of Insubria, 21100 Varese, Italy;
| | - Alessandra Majorana
- Department of Oral Medicine and Paediatric Dentistry, University of Brescia, 25121 Brescia, Italy; (A.M.); (E.B.)
| | - Elena Bardellini
- Department of Oral Medicine and Paediatric Dentistry, University of Brescia, 25121 Brescia, Italy; (A.M.); (E.B.)
| | - Claudia Salerno
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland; (C.S.); (T.G.W.); (G.C.)
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
| | - Thomas Gerard Wolf
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland; (C.S.); (T.G.W.); (G.C.)
- Department of Periodontology and Operative Dentistry, University Medical Center of the Jhoannes Gutenberg University Mainz, 55116 Mainz, Germany
| | - Guglielmo Campus
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland; (C.S.); (T.G.W.); (G.C.)
| | - Maria Grazia Cagetti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20112 Milano, Italy
| |
Collapse
|
2
|
Corrêa JD, Faria GA, Fernandes LL. The oral microbiota and gestational diabetes mellitus. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1120920. [PMID: 36993820 PMCID: PMC10012133 DOI: 10.3389/fcdhc.2023.1120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Gestational diabetes mellitus (GDM) is one of the most frequent endocrine conditions during pregnancy. GDM is linked to adverse pregnancy outcomes and has implications for maternal health. Studies have demonstrated the link between pathogenic periodontal bacteria, glycemic control, and the risk of diabetes. The objective of the current study is to perform a mini-review of the available literature on the potential changes in the oral microbiota of women with GDM. The review was conducted by two independent reviewers (LLF and JDC). Indexed electronic databases (PubMed/Medline, Cochrane Library, Web of Science, and Scopus) were searched, including articles published in English and Portuguese. A manual search was also performed to identify related articles. The oral microbial community of pregnant women with GDM is unique from that of healthy pregnant women. The majority of the alterations found in the oral microbiota of women with GDM point to a pro-inflammatory environment with high levels of bacteria associated with periodontitis (Prevotella, Treponema, anaerobic bacteria) and a depletion of bacteria associated with periodontal health maintenance (Firmicutes, Streptococcus, Leptotrichia). More well-designed studies differentiating between pregnant women with good oral health and those with periodontitis are needed to ascertain which differences are due to GDM or periodontitis.
Collapse
|
3
|
The Bidirectional Relationship between Periodontal Disease and Diabetes Mellitus-A Review. Diagnostics (Basel) 2023; 13:diagnostics13040681. [PMID: 36832168 PMCID: PMC9954907 DOI: 10.3390/diagnostics13040681] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by the presence of a bacterial biofilm known as dental plaque. This biofilm affects the supporting apparatus of the teeth, especially the periodontal ligaments and the bone surrounding the teeth. Periodontal disease and diabetes seem to be interrelated and in a bidirectional relationship, and have been increasingly studied in recent decades. For example, diabetes mellitus has a detrimental effect on periodontal disease, increasing its prevalence, extent, and severity. In turn, periodontitis negatively affects glycemic control and the course of diabetes. This review aims to present the most recently discovered factors that contribute to the pathogenesis, therapy, and prophylaxis of these two diseases. Specifically, the article focuses on microvascular complications, oral microbiota, pro- and anti-inflammatory factors in diabetes, and periodontal disease. As presented in this review, these two diseases require specific/ complementary therapeutic solutions when they occur in association, with new clinical trials and epidemiological research being necessary for better control of this interdependent pathogenic topic.
Collapse
|
4
|
Damante CA, Foratori GA, de Oliveira Cunha P, Negrato CA, Sales-Peres SHC, Zangrando MSR, Sant'Ana ACP. Association among gestational diabetes mellitus, periodontitis and prematurity: a cross-sectional study. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:58-67. [PMID: 35263049 PMCID: PMC9991029 DOI: 10.20945/2359-3997000000435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective Gestational diabetes mellitus (GDM) causes maternal and infant morbidity. Periodontitis is associated with adverse pregnancy outcomes. The aim of this study was to evaluate periodontal status, prematurity and associated factors in pregnant women with and without GDM. Methods This observational cross-sectional study included 80 pregnant women with GDM (G1 = 40) and without GDM (G2 = 40). Demographic and socioeconomic status, systemic and periodontal health condition, prematurity and newborns' birth weight were analyzed. For bivariate analysis, Mann-Whitney U-test, t test and Chi-squared test were used. Binary logistic regression analyzed independent variables for periodontitis and prematurity (p < 0.05). Results Patients from G1 presented lower socioeconomic status, higher weight and body mass index (BMI). Prematurity (G1 = 27.5%; G2 = 2.5%; p < 0.05) and severe periodontitis percentages (G1 = 22.5%; G2 = 0; p = 0.001) were higher in G1 than in G2. Logistic regression analysis showed that household monthly income (OR = 0.65; 95% CI 0.48-0.86; p = 0.003) and maternal BMI (adjusted OR = 1.12; 95% CI 1.01-1.25; p = 0.028) were significant predictors of periodontitis during the third trimester of pregnancy. Presence of GDM remained in the final logistic model related to prematurity (adjusted OR = 14.79; 95% CI 1.80-121.13; p = 0.012). Conclusion Pregnant women with GDM presented higher severity of periodontitis, lower socioeconomic status, higher overweight/obesity and a 10-fold higher risk of prematurity. Socioeconomic-cultural status and BMI were significant predictors for periodontitis, and GDM was a predictor to prematurity.
Collapse
Affiliation(s)
- Carla Andreotti Damante
- Departamento de Prótese e Periodontia, Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, SP, Brasil,
| | - Gerson Aparecido Foratori
- Departamento de Odontopediatria, Ortodontia e Saúde Pública. Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, SP, Brasil
| | - Paula de Oliveira Cunha
- Departamento de Prótese e Periodontia, Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, SP, Brasil
| | - Carlos Antonio Negrato
- Faculdade de Medicina, Departamento de Odontopediatria, Ortodontia e Saúde Pública; Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, SP, Brasil
| | - Silvia Helena Carvalho Sales-Peres
- Departamento de Odontopediatria, Ortodontia e Saúde Pública. Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, SP, Brasil
| | | | | |
Collapse
|
5
|
Bendek MJ, Canedo-Marroquín G, Realini O, Retamal IN, Hernández M, Hoare A, Busso D, Monteiro LJ, Illanes SE, Chaparro A. Periodontitis and Gestational Diabetes Mellitus: A Potential Inflammatory Vicious Cycle. Int J Mol Sci 2021; 22:ijms222111831. [PMID: 34769262 PMCID: PMC8584134 DOI: 10.3390/ijms222111831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is a chronic inflammatory immune disease associated with a dysbiotic state, influenced by keystone bacterial species responsible for disrupting the periodontal tissue homeostasis. Furthermore, the severity of periodontitis is determined by the interaction between the immune cell response in front of periodontitis-associated species, which leads to the destruction of supporting periodontal tissues and tooth loss in a susceptible host. The persistent bacterial challenge induces modifications in the permeability and ulceration of the sulcular epithelium, which facilitates the systemic translocation of periodontitis-associated bacteria into distant tissues and organs. This stimulates the secretion of pro-inflammatory molecules and a chronic activation of immune cells, contributing to a systemic pro-inflammatory status that has been linked with a higher risk of several systemic diseases, such as type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus (GDM). Although periodontitis and GDM share the common feature of systemic inflammation, the molecular mechanistic link of this association has not been completely clarified. This review aims to examine the potential biological mechanisms involved in the association between periodontitis and GDM, highlighting the contribution of both diseases to systemic inflammation and the role of new molecular participants, such as extracellular vesicles and non-coding RNAs, which could act as novel molecular intercellular linkers between periodontal and placental tissues.
Collapse
Affiliation(s)
- María José Bendek
- Department of Periodontology, Centre for Biomedical Research, Faculty of Dentistry, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 7620157, Chile; (M.J.B.); (G.C.-M.); (O.R.); (I.N.R.)
| | - Gisela Canedo-Marroquín
- Department of Periodontology, Centre for Biomedical Research, Faculty of Dentistry, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 7620157, Chile; (M.J.B.); (G.C.-M.); (O.R.); (I.N.R.)
| | - Ornella Realini
- Department of Periodontology, Centre for Biomedical Research, Faculty of Dentistry, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 7620157, Chile; (M.J.B.); (G.C.-M.); (O.R.); (I.N.R.)
| | - Ignacio N. Retamal
- Department of Periodontology, Centre for Biomedical Research, Faculty of Dentistry, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 7620157, Chile; (M.J.B.); (G.C.-M.); (O.R.); (I.N.R.)
| | - Marcela Hernández
- Laboratory of Periodontal Biology and Department of Pathology and Oral Medicine, Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago 8380544, Chile;
| | - Anilei Hoare
- Laboratory of Oral Microbiology, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Olivos 943, Independencia, Santiago 8380544, Chile;
| | - Dolores Busso
- Program in Biology of Reproduction, Centre for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago 8380544, Chile; (D.B.); (L.J.M.); (S.E.I.)
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 8380544, Chile
| | - Lara J. Monteiro
- Program in Biology of Reproduction, Centre for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago 8380544, Chile; (D.B.); (L.J.M.); (S.E.I.)
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 8380544, Chile
| | - Sebastián E. Illanes
- Program in Biology of Reproduction, Centre for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago 8380544, Chile; (D.B.); (L.J.M.); (S.E.I.)
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 8380544, Chile
| | - Alejandra Chaparro
- Department of Periodontology, Centre for Biomedical Research, Faculty of Dentistry, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 7620157, Chile; (M.J.B.); (G.C.-M.); (O.R.); (I.N.R.)
- Correspondence: ; Tel.: +56-998376593
| |
Collapse
|
6
|
Jang H, Patoine A, Wu TT, Castillo DA, Xiao J. Oral microflora and pregnancy: a systematic review and meta-analysis. Sci Rep 2021; 11:16870. [PMID: 34413437 PMCID: PMC8377136 DOI: 10.1038/s41598-021-96495-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding changes in oral flora during pregnancy, its association to maternal health, and its implications to birth outcomes is essential. We searched PubMed, Embase, Web of Science, and Cochrane Library in May 2020 (updated search in April and June 2021), and conducted a systematic review and meta-analyses to assess the followings: (1) oral microflora changes throughout pregnancy, (2) association between oral microorganisms during pregnancy and maternal oral/systemic conditions, and (3) implications of oral microorganisms during pregnancy on birth outcomes. From 3983 records, 78 studies were included for qualitative assessment, and 13 studies were included in meta-analysis. The oral microflora remains relatively stable during pregnancy; however, pregnancy was associated with distinct composition/abundance of oral microorganisms when compared to postpartum/non-pregnant status. Oral microflora during pregnancy appears to be influenced by oral and systemic conditions (e.g. gestational diabetes mellitus, pre-eclampsia, etc.). Prenatal dental care reduced the carriage of oral pathogens (e.g. Streptococcus mutans). The Porphyromonas gingivalis in subgingival plaque was more abundant in women with preterm birth. Given the results from meta-analyses were inconclusive since limited studies reported outcomes on the same measuring scale, more future studies are needed to elucidate the association between pregnancy oral microbiota and maternal oral/systemic health and birth outcomes.
Collapse
Affiliation(s)
- Hoonji Jang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexa Patoine
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Daniel A Castillo
- Miner Library, University of Rochester Medical Center, Rochester, NY, USA
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA.
- Perinatal Oral Health, Eastman Institute for Oral Health, University of Rochester, 625 Elmwood Ave, Rochester, 14620, USA.
| |
Collapse
|
7
|
Impact of Diabetes on the Gut and Salivary IgA Microbiomes. Infect Immun 2020; 88:IAI.00301-20. [PMID: 32900816 DOI: 10.1128/iai.00301-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mucosal surfaces like those present in the lung, gut, and mouth interface with distinct external environments. These mucosal gateways are not only portals of entry for potential pathogens but also homes to microbial communities that impact host health. Secretory immunoglobulin A (SIgA) is the single most abundant acquired immune component secreted onto mucosal surfaces and, via the process of immune exclusion, shapes the architecture of these microbiomes. Not all microorganisms at mucosal surfaces are targeted by SIgA; therefore, a better understanding of the SIgA-coated fraction may identify the microbial constituents that stimulate host immune responses in the context of health and disease. Chronic diseases like type 2 diabetes are associated with altered microbial communities (dysbiosis) that in turn affect immune-mediated homeostasis. 16S rRNA gene sequencing of SIgA-coated/uncoated bacteria (IgA-Biome) was conducted on stool and saliva samples of normoglycemic participants and individuals with prediabetes or diabetes (n = 8/group). These analyses demonstrated shifts in relative abundance in the IgA-Biome profiles between normoglycemic, prediabetic, or diabetic samples distinct from that of the overall microbiome. Differences in IgA-Biome alpha diversity were apparent for both stool and saliva, while overarching bacterial community differences (beta diversity) were also observed in saliva. These data suggest that IgA-Biome analyses can be used to identify novel microbial signatures associated with diabetes and support the need for further studies exploring these communities. Ultimately, an understanding of the IgA-Biome may promote the development of novel strategies to restructure the microbiome as a means of preventing or treating diseases associated with dysbiosis at mucosal surfaces.
Collapse
|