1
|
Ibrahim MA, Isah MB, Inim MD, Abdullahi AD, Adamu A. The connections of sialic acids and diabetes mellitus: therapeutic or diagnostic value? Glycobiology 2024; 34:cwae053. [PMID: 39041707 DOI: 10.1093/glycob/cwae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Modulation of sialic acids is one of the important pathological consequences of both type 1 and type 2 diabetes mellitus with or without the micro- and macrovascular complications. However, the mechanistic, therapeutic and/or diagnostic implications of these observations are uncoordinated and possibly conflicting. This review critically analyses the scientific investigations connecting sialic acids with diabetes mellitus. Generally, variations in the levels and patterns of sialylation, fucosylation and galactosylation were predominant across various tissues and body systems of diabetic patients, but the immune system seemed to be most affected. These might be explored as a basis for differential diagnosis of various diabetic complications. Sialic acids are predominantly elevated in nearly all forms of diabetic conditions, particularly nephropathy and retinopathy, which suggests some diagnostic value but the mechanistic details were not unequivocal from the available data. The plausible mechanistic explanations for the elevated sialic acids are increased desialylation by sialidases, stimulation of hexosamine pathway and synthesis of acute phase proteins as well as oxidative stress. Additionally, sialic acids are also profoundly associated with glucose transport and insulin resistance in human-based studies while animal-based studies revealed that the increased desialylation of insulin receptors by sialidases, especially NEU1, might be the causal link. Interestingly, inhibition of the diabetes-associated NEU1 desialylation was beneficial in diabetes management and might be considered as a therapeutic target. It is hoped that the article will provide an informed basis for future research activities on the exploitation of sialic acids and glycobiology for therapeutic and/or diagnostic purposes against diabetes mellitus.
Collapse
Affiliation(s)
| | - Murtala Bindawa Isah
- Department of Biochemistry, Umaru Musa Yar'adua University, P.M.B. 2218, Katsina, Nigeria
| | - Mayen David Inim
- Department of Biochemistry, Ahmadu Bello University, Samaru, 80001, Zaria, Nigeria
| | | | - Auwal Adamu
- Department of Biochemistry, Ahmadu Bello University, Samaru, 80001, Zaria, Nigeria
| |
Collapse
|
2
|
Adekunle YA, Samuel BB, Nahar L, Fatokun AA, Sarker SD. Anogeissus leiocarpus (DC.) Guill. & Perr. (Combretaceae): A review of the traditional uses, phytochemistry and pharmacology of African birch. Fitoterapia 2024; 176:105979. [PMID: 38692415 DOI: 10.1016/j.fitote.2024.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Anogeissus leiocarpus (DC.) Guill. & Perr. belongs to the family Combretaceae and is used both by African traditional medical practitioners and livestock rearers to treat diseases such as African trypanosomiasis, animal diarrhoea, asthma, cancer, cough, diabetes, dysentery, erectile dysfunction, fever, giardiasis, helminthiases, meningitis, menstrual disorders, monkeypox, oral infections, poliomyelitis, sickle cell anaemia, snake bites, toothache, urinary schistosomiasis, and yellow fever. Some of these activities have been associated with the presence of polyphenols in the plant which include ellagic acid derivatives, flavonoids, stilbenes, tannins, and triterpenes. Several bioactive molecules have been identified from A. leiocarpus. These include the main active constituents, ellagitannins, ellagic acid derivates, flavonoids and triterpenes. Pharmacological studies have confirmed its antibacterial, antifungal, antihyperglycemic, antihypertensive, antimalarial, antioxidative, antiparasitic, antitumour and anti-ulcer effects. The stem bark has been investigated mainly for biological activities and phytochemistry, and it is the most mentioned plant part highlighted by the traditional users in ethnomedicinal surveys. In vitro and in vivo models, which revealed a wide range of pharmacological actions against parasites causing helminthiasis, leishmaniasis, malaria and trypanosomiasis, have been used to study compounds from A. leiocarpus. Because of its uses in African traditional medicine and veterinary practices, A. leiocarpus has received considerable attention from researchers. The current review provides a comprehensive overview and critical appraisal of scientific reports on A. leiocarpus, covering its traditional uses, pharmacological activities and phytochemistry.
Collapse
Affiliation(s)
- Yemi A Adekunle
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Oduduwa Road, Ibadan 200132, Oyo State, Nigeria; Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom; Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Km 8.5, Afe Babalola Way, P.M.B. 5454, Ado-Ekiti, Ekiti State, Nigeria.
| | - Babatunde B Samuel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Oduduwa Road, Ibadan 200132, Oyo State, Nigeria.
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc 78371, Czech Republic.
| | - Amos A Fatokun
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
3
|
Erhabor OG, Obochi P, Isah MB, Usman MA, Umar IA, Simelane MBC, Shuaibu MN, Islam MS, Ibrahim MA. Possible involvement of sialidase and sialyltransferase activities in a stage-dependent recycling of sialic acid in some organs of type 1 and type 2 diabetic rats. Front Endocrinol (Lausanne) 2024; 15:1289653. [PMID: 38978616 PMCID: PMC11228288 DOI: 10.3389/fendo.2024.1289653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Background Type 1 (T1D) and type 2 (T2D) diabetes lead to an aberrant metabolism of sialoglycoconjugates and elevated free serum sialic acid (FSSA) level. The present study evaluated sialidase and sialyltranferase activities in serum and some organs relevant to diabetes at early and late stages of T1D and T2D. Methods Sialic acid level with sialidase and sialyltransferase activities were monitored in the serum, liver, pancreas, skeletal muscle and kidney of diabetic animals at early and late stages of the diseases. Results The FSSA and activity of sialidase in the serum were significantly increased at late stage of both T1D and T2D while sialic acid level in the liver was significantly decreased in the early and late stages of T1D and T2D, respectively. Furthermore, the activity of sialidase was significantly elevated in most of the diabetes-relevant organs while the activity of sialyltransferase remained largely unchanged. A multiple regression analysis revealed the contribution of the liver to the FSSA while pancreas and kidney contributed to the activity of sialidase in the serum. Conclusions We concluded that the release of hepatic sialic acid in addition to pancreatic and renal sialidase might (in)directly contribute to the increased FSSA during both types of diabetes mellitus.
Collapse
Affiliation(s)
| | - Peter Obochi
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | | | | | | - Md. Shahidul Islam
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | |
Collapse
|
4
|
Num-Adom SM, Adamu S, Aluwong T, Ogbuagu NE, Umar IA, Esievo KAN. Ethanolic extract of Anogeissus leiocarpus ameliorates hyperglycaemia, hepato-renal damage, deranged electrolytes and acid-base balance in alloxan-induced diabetes in dogs. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|