1
|
Mullai P, Sambavi SM, Vishali S, Dharmalingam K, Sutha S, Dinesh S, Anandhi T, Al Noman MA, Bilyaminu AM, James A. An integrated review on the role of different biocatalysts, process parameters, bioreactor technologies and data-driven predictive models for upgrading biogas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125508. [PMID: 40327925 DOI: 10.1016/j.jenvman.2025.125508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
As energy consumption and waste generation from human activities continue to rise, the technology of anaerobic digestion (AD), which converts waste into bioenergy, has gained popularity. Biogas produced from AD commonly contains 60 % CH4, 40 % CO2 and a minor fraction of impurities. Currently, several anaerobic reactors have been designed to upgrade the biogas with biomethane content above 90 %. This review summarizes the current trends in the biological upgradation of biogas from a bio-circular economy perspective to achieve sustainable energy goals. Examples of applications reporting the latest advancements in treating industrial effluents using high-rate anaerobic reactors have been mentioned. The integrated anaerobic-aerobic hybrid reactor offers a solution to the limitations of traditional methods in treating diverse effluents. A special focus on biological upgradation techniques such as in-situ, ex-situ, and hybrid mechanisms have been briefed. The key advantage of hybrid upgradation is its ability to address the pH rise during in-situ process. Additionally, the applications of artificial neural networks and optimization to upgrade biogas production have been discussed. The review concludes with future research directives with emphasis on the economic viability of the approaches.
Collapse
Affiliation(s)
- P Mullai
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - S M Sambavi
- Department of Chemical and Biological Engineering, Energy Engineering with Industrial Management, University of Sheffield, Sheffield, United Kingdom.
| | - S Vishali
- Department of Chemical Engineering, SRM Institute of Science and Engineering, Kattankulathur, 603 203, Tamil Nadu, India.
| | - K Dharmalingam
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Telangana, India.
| | - S Sutha
- Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chromepet, Chennai, 600044, Tamil Nadu, India.
| | - S Dinesh
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - T Anandhi
- Department of Electronics and Instrumentation Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - Md Abdullah Al Noman
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Anina James
- J & K Pocket, Dilshad Garden, Delhi, 110095, India.
| |
Collapse
|
2
|
Priyadarshini M, Ahmad A, Das S, Ghangrekar MM. Application of microbial electrochemical technologies for the treatment of petrochemical wastewater with concomitant valuable recovery: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61783-61802. [PMID: 34231137 DOI: 10.1007/s11356-021-14944-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 02/08/2023]
Abstract
Petrochemical industry is one of the major and rapidly growing industry that generates a variety of toxic and recalcitrant organic pollutants as by-products, which are not only harmful to the aquatic animals but also affects human health. The majority of the components of petrochemical wastewater (PW) are carcinogenic, genotoxic and phytotoxic in nature; hence, this complex wastewater generated from different petrochemical processes should be efficiently treated prior to its disposal in natural water bodies. The established technologies like advanced oxidation, membrane bioreactor, electrocoagulation and activated sludge process employed for the treatment of PW are highly energy intensive and incurs high capital and operation cost. Moreover, these technologies are not effective in completely eliminating petroleum hydrocarbons present in PW. Thus, to reduce the energy requirement and also to transform the chemical energy trapped in these organic matters present in this wastewater into bioelectricity and other value-added products, microbial electrochemical technologies (METs) can be efficaciously used, which would also compensate the treatment cost by transforming these pollutants into bioenergy and valuables. In this regard, this review elucidates the feasibility and application of different METs as an appropriate alternative for the treatment of PW. Furthermore, the numerous bottlenecks towards the real-life application and commercialization of pioneering METs have also been articulated.
Collapse
Affiliation(s)
- Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Makarand Madhao Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
5
|
Microbial Electrolysis Cells for Decentralised Wastewater Treatment: The Next Steps. WATER 2021. [DOI: 10.3390/w13040445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditional wastewater treatment methods have become aged and inefficient, meaning alternative methods are essential to protect the environment and ensure water and energy security worldwide. The use of microbial electrolysis cells (MEC) for wastewater treatment provides an innovative alternative, working towards circular wastewater treatment for energy production. This study evaluates the factors hindering industrial adoption of this technology and proposes the next steps for further research and development. Existing pilot-scale investigations are studied to critically assess the main limitations, focusing on the electrode material, feedstock, system design and inoculation and what steps need to be taken for industrial adoption of the technology. It was found that high strength influents lead to an increase in energy production, improving economic viability; however, large variations in waste streams indicated that a homogenous solution to wastewater treatment is unlikely with changes to the MEC system specific to different waste streams. The current capital cost of implementing MECs is high and reducing the cost of the electrodes should be a priority. Previous pilot-scale studies have predominantly used carbon-based materials. Significant reductions in relative performance are observed when electrodes increase in size. Inoculation time was found to be a significant barrier to quick operational performance. Economic analysis of the technology indicated that MECs offer an attractive option for wastewater treatment, namely greater energy production and improved treatment efficiency. However, a significant reduction in capital cost is necessary to make this economically viable. MEC based systems should offer improvements in system reliability, reduced downtime, improved treatment rates and improved energy return. Discussion of the merits of H2 or CH4 production indicates that an initial focus on methane production could provide a stepping-stone in the adoption of this technology while the hydrogen market matures.
Collapse
|
6
|
Wei X, Kazemi M, Zhang S, Wolfe FA. Petrochemical wastewater and produced water: Treatment technology and resource recovery. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1695-1700. [PMID: 32762112 DOI: 10.1002/wer.1424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Petrochemical wastewater and produced water from oil and gas operations typically contain an array of organic and inorganic contaminants. The complexity of the wastewater, stringent environmental regulations, and the need for sustainable solutions have driven many research efforts in studying and developing advanced technology or combined treatment processes. On the other hand, the wastewater itself can be resources for water, energy, and other valuable product if appropriate technology is developed to recover them in a cost-effective fashion. The research advances in wastewater treatment and resource recovery technology are reviewed and summarized. For petrochemical wastewater, progresses were made in advanced oxidation, biological processes, and recovery of energy and water from wastewater. For produced water, many efforts were focused on membrane processes, combined systems, and biological treatment. PRACTITIONER POINTS: Significant progress continued to be made on petrochemical wastewater and produced water treatment. Recent technological advances in various treatment processes were summarized. Technologies focusing on resource recovery (e.g., water or energy) were presented.
Collapse
Affiliation(s)
- Xinchao Wei
- School of Engineering, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Mohammad Kazemi
- School of Engineering, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Shicheng Zhang
- Department of Environmental Science and Technology, Fudan University, Shanghai, China
| | - Frederick A Wolfe
- College of Engineering, The State University of New York Polytechnic Institute, Utica, New York, USA
| |
Collapse
|
7
|
Hung YT, Aziz HA, Ramli SF, Paul HH, Huhnke CR, Adesanmi BM. Chemical waste and allied products. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1504-1509. [PMID: 32659868 DOI: 10.1002/wer.1399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
This paper reviews the related literature reported in 2019 about various types of wastewaters associated with chemical and allied products. The subjects comprise wastewaters produced from various activities in agricultural, chemical, dye, petrochemical, and pharmaceutical. PRACTITIONER POINTS: Bioflocculant chitosan was used for sludge dewatering and the treatment of water and wastewater, and polishing of sanitary landfill leachate. Alkaline lignin-based flocculants were used to achieve excellent color removal for paper mill sludge. Powdered activated coke was used to remove COD (chemical oxygen demand) from chemical industry wastewater effluents.
Collapse
Affiliation(s)
- Yung-Tse Hung
- Department of Civil and Environmental Engineering, Cleveland State University, Cleveland, Ohio
| | - Hamidi Abdul Aziz
- School of Civil Engineering Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
- Solid Waste Management Cluster Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Siti Fatihah Ramli
- School of Civil Engineering Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Howard H Paul
- Department of Information Systems, Cleveland State University, Cleveland, Ohio
| | | | - Bukola M Adesanmi
- Department of Civil and Environmental Engineering, Cleveland State University, Cleveland, Ohio
| |
Collapse
|