Jahani F, Maleki B, Mansouri M, Noorimotlagh Z, Mirzaee SA. Enhanced photocatalytic performance of milkvetch-derived biochar via ZnO-Ce nanoparticle decoration for reactive blue 19 dye removal.
Sci Rep 2023;
13:17824. [PMID:
37857691 PMCID:
PMC10587109 DOI:
10.1038/s41598-023-45145-9]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
In this research, the photocatalytic removal of reactive blue 19 (RB19) dye is investigated employing zinc oxide/cerium (ZnO@Ce) nanoparticles decorated with biochar under LED irradiation. Synthesis of ZnO@Ce nanoparticles decorated with biochar was performed utilizing the co-precipitation procedure and, then, the texture and morphology of the fabricated nanocomposite were analyzed using energy dispersive X-ray (EDX), field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), and Fourier transform infrared (FTIR) spectroscopy techniques. Moreover, FE-SEM images demonstrate that ZnO-Ce nanoparticles were successfully decorated on the surface of biochar. The specific surface areas of biochar and biochar/ZnO-Ce were 519.75 and 636.52 m2/g, respectively. To achieve the maximum yield in the removal of RB19 dye, the effects of operating variables including dye concentration, LED lamp power, biochar@ZnO-Ce catalyst dose, pH and H2O2 dose were explored. Besides, the maximum percentage of RB19 dye removal was 96.47% under optimal conditions, i.e. catalyst dosage of 100 mg, H2O2 dosage of 1 mL, pH of 9, initial dye concentration of 5 ppm, LED power of 50 W, and reaction time of 140 min. Furthermore, the kinetic analysis reveals that the removal of RB19 dye follows the pseudo-first order kinetic model, with calculated values of a reaction rate constant of 0.045 min-1 and a correlation coefficient of R2 = 0.99, respectively. Moreover, the reusability and recyclability of biochar@ZnO/Ce nanocatalyst was promising over five runs, with only a 6.08% decrease in RB19 dye removal efficiency. Therefore, it can be concluded that the biochar @ZnO/Ce photocatalyst can be promisingly applied for the removal of azo dyes in aqueous solutions.
Collapse