1
|
Abebe B, Kefale B, Amenu G, Guta L, Ravikumar CR, Hamdalla TA, Giridhar Reddy S, Tsegaye D, Murthy HCA. Cobalt-Doped ZnO Nanocomposits for Efficient Dye Degradation: Charge Transfer. ChemistryOpen 2024; 13:e202400203. [PMID: 39246219 PMCID: PMC11625955 DOI: 10.1002/open.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/29/2024] [Indexed: 09/10/2024] Open
Abstract
Doping enhances the optical properties of high-band gap zinc oxide nanoparticles (ZnO NPs), essential for their photocatalytic activity. We used the combustion approach to synthesize cobalt-doped ZnO heterostructure (CDZO). By creating a mid-edge level, it was possible to tune the indirect band gap of the ZnO NPs from 3.1 eV to 1.8 eV. The red shift and reduction in the intensity of the photoluminescence (PL) spectra resulted from hindrances in electron-hole recombination and sp-d exchange interactions. These improved optical properties expanded the absorption of solar light and enhanced charge transfer. The field emission scanning electron microscopy (FESEM) image and elemental mapping analysis confirmed the CDZO's porous nature and the dopant's uniform distribution. The porosity, nanoscale size (25-55 nm), and crystallinity of the CDZO were further verified by high-resolution transmission electron microscopy (HRTEM) and selected area electron image analysis. The photocatalytic activity of the CDZO exhibited much greater efficiency (k=0.131 min-1) than that of ZnO NPs (k=0.017 min-1). Therefore, doped heterostructures show great promise for industrial-scale environmental remediation applications.
Collapse
Affiliation(s)
- Buzuayehu Abebe
- Department of Applied ChemistryAdama Science and Technology UniversityP.O. Box 1888AdamaEthiopia
| | - Bontu Kefale
- Department of Applied ChemistryAdama Science and Technology UniversityP.O. Box 1888AdamaEthiopia
| | - Guta Amenu
- Department of Applied ChemistryAdama Science and Technology UniversityP.O. Box 1888AdamaEthiopia
| | - Leta Guta
- Department of Applied ChemistryAdama Science and Technology UniversityP.O. Box 1888AdamaEthiopia
| | - C. R. Ravikumar
- Department of ScienceEast-West Institute of TechnologyBangalore560091India
| | | | - S. Giridhar Reddy
- Department of ChemistryAmrita School of EngineeringAmrita Vishwa VidyapeethamBengaluru560035India
| | - Dereje Tsegaye
- Department of Applied ChemistryAdama Science and Technology UniversityP.O. Box 1888AdamaEthiopia
| | - H. C. Ananda Murthy
- School of Applied SciencesPapua New Guinea University of TechnologyLaeMorobe Province411Papua New Guinea
| |
Collapse
|
2
|
Abebe B, Gupta NK, Tsegaye D. A critical mini-review on doping and heterojunction formation in ZnO-based catalysts. RSC Adv 2024; 14:17338-17349. [PMID: 38813127 PMCID: PMC11134265 DOI: 10.1039/d4ra02568g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
This mini-review on doping and heterojunctions for catalysis applications provides a comprehensive overview of key aspects. Doping, when carried out adequately with a uniform distribution, creates a new energy level that significantly enhances charge transfer and light absorption. This new level alters the material's morphology and enhances intrinsic defects. For instance, ZnO, despite its exceptional band edge concerning oxygen reduction and water oxidation redox potentials, faces the issue of electron-hole recombination. However, forming a heterojunction can effectively aid charge transfer and prolong electron-hole relaxation without recombination. This is where the role of doping and heterojunctions becomes crucial. Additionally, incorporating noble metals with S- and Z-scheme heterojunctions offers a promising mechanism for charge transfer and visible light harvesting, further amplifying the catalytic properties.
Collapse
Affiliation(s)
- Buzuayehu Abebe
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| | - Neeraj K Gupta
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| | - Dereje Tsegaye
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| |
Collapse
|
3
|
Hassaan MA, Meky AI, Fetouh HA, Ismail AM, El Nemr A. Central composite design and mechanism of antibiotic ciprofloxacin photodegradation under visible light by green hydrothermal synthesized cobalt-doped zinc oxide nanoparticles. Sci Rep 2024; 14:9144. [PMID: 38644378 PMCID: PMC11551219 DOI: 10.1038/s41598-024-58961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
In this research, different Co2+ doped ZnO nanoparticles (NPs) were hydrothermally synthesized by an environmentally friendly, sustainable technique using the extract of P. capillacea for the first time. Co-ZnO was characterized and confirmed by FTIR, XPS, XRD, BET, EDX, SEM, TEM, DRS UV-Vis spectroscopy, and TGA analyses. Dislocation density, micro strains, lattice parameters and volume of the unit cell were measured using XRD results. XRD suggests that the average size of these NPs was between 44.49 and 65.69 nm with a hexagonal wurtzite structure. Tauc plot displayed that the optical energy bandgap of ZnO NPs (3.18) slowly declines with Co doping (2.96 eV). Near complete removal of the ciprofloxacin (CIPF) antibiotic was attained using Green 5% of Hy-Co-ZnO in the existence of visible LED light which exhibited maximum degradation efficiency (99%) within 120 min for 30 ppm CIPF initial concentration. The photodegradation mechanism of CIPF using Green Hy-Co-ZnO NPs followed the Pseudo-first-order kinetics. The Green Hy-Co-ZnO NPs improved photocatalytic performance toward CIPF for 3 cycles. The experiments were designed using the RSM (CCD) method for selected parameters such as catalyst dosage, antibiotic dosage, shaking speed, and pH. The maximal CIPF degradation efficiency (96.4%) was achieved under optimum conditions of 39.45 ppm CIPF dosage, 60.56 mg catalyst dosage, 177.33 rpm shaking speed and pH 7.57.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Asmaa I Meky
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Alexandria Higher Institute of Engineering and Technology, Alexandria, 21311, Egypt
| | - Howida A Fetouh
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amel M Ismail
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
| |
Collapse
|
4
|
Tasnim NT, Ferdous N, Rumon MMH, Shakil MS. The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent. ACS OMEGA 2024; 9:16-32. [PMID: 38222657 PMCID: PMC10785672 DOI: 10.1021/acsomega.3c06323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Antibiotic resistance (AMR) is one of the pressing global public health concerns and projections indicate a potential 10 million fatalities by the year 2050. The decreasing effectiveness of commercially available antibiotics due to the drug resistance phenomenon has spurred research efforts to develop potent and safe antimicrobial agents. Iron oxide nanoparticles (IONPs), especially when doped with metals, have emerged as a promising avenue for combating microbial infections. Like IONPs, the antimicrobial activities of doped-IONPs are also linked to their surface charge, size, and shape. Doping metals on nanoparticles can alter the size and magnetic properties by reducing the energy band gap and combining electronic charges with spins. Furthermore, smaller metal-doped nanoparticles tend to exhibit enhanced antimicrobial activity due to their higher surface-to-volume ratio, facilitating greater interaction with bacterial cells. Moreover, metal doping can also lead to increased charge density in magnetic nanoparticles and thereby elevate reactive oxygen species (ROS) generation. These ROS play a vital role to disrupt bacterial cell membrane, proteins, or nucleic acids. In this review, we compared the antimicrobial activities of different doped-IONPs, elucidated their mechanism(s), and put forth opinions for improved biocompatibility.
Collapse
Affiliation(s)
- Nazifa Tabassum Tasnim
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Nushrat Ferdous
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
5
|
Raj A, Thomas RK, Vidya L, Aparna VM, Neelima S, Sudarsanakumar C. Exploring the cytotoxicity on human lung cancer cells and DNA binding stratagem of camptothecin functionalised silver nanoparticles through multi-spectroscopic, and calorimetric approach. Sci Rep 2023; 13:9045. [PMID: 37270606 DOI: 10.1038/s41598-023-34997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/11/2023] [Indexed: 06/05/2023] Open
Abstract
The influence of nanoparticles inside the human body and their interactions with biological macromolecules need to be explored/studied prior to specific applications. The objective of this study is to find the potential of camptothecin functionalised silver nanoparticles (CMT-AgNPs) in biomedical applications. This article primarily investigates the binding stratagem of CMT-AgNPs with calf thymus DNA (ctDNA) through a series of spectroscopic and calorimetric methods and then analyses the anticancer activity and cytotoxicity of CMT-AgNPs. The nanoparticles were synthesized using a simple one pot method and characterized using UV-Visible, fourier transform infrared (FTIR) spectroscopy, X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). The average size of CMT-AgNPs is 10 ± 2 nm. A group of experimental techniques such as UV-Visible spectrophotometry, fluorescence dye displacement assay, circular dichroism (CD) and viscosity analysis unravelled the typical groove binding mode of CMT-AgNPs with ctDNA. The CD measurement evidenced the minor conformational alterations of double helical structure of ctDNA in the presence of CMT-AgNPs. The information deduced from the isothermal titration calorimetry (ITC) experiment is that the binding was exothermic and spontaneous in nature. Moreover, all the thermodynamic binding parameters were extracted from the ITC data. The binding constants obtained from UV absorption experiments, fluorescence dye displacement studies and ITC were consistently in the order of 104 Mol-1. All these results validated the formation of CMT-AgNPs-ctDNA complex and the results unambiguously confirm the typical groove binding mode of CMT-AgNPs. An exhaustive in vitro MTT assay by CMT-AgNPs and CMT against A549, HT29, HeLa and L929 cell lines revealed the capability of CMT-AgNPs as a potential anticancer agent.
Collapse
Affiliation(s)
- Aparna Raj
- School of Pure and Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - Riju K Thomas
- School of Pure and Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
- Bharata Mata College, Thrikkakara, Ernakulam, Kerala, 682032, India
| | - L Vidya
- School of Pure and Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - V M Aparna
- School of Pure and Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - S Neelima
- School of Pure and Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - C Sudarsanakumar
- School of Pure and Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India.
| |
Collapse
|