1
|
Lin CX, Yang K, Li PC, Gao LT, Aziz Y, Li JH, Miyatake H, Ito Y, Chen YM. Self-healing and injectable chitosan/konjac glucomannan hydrogel with pH response for controlled protein release. Colloids Surf B Biointerfaces 2024; 242:114089. [PMID: 39047642 DOI: 10.1016/j.colsurfb.2024.114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Dynamic hydrogels with the features of injection, self-healing, and remodeling at the target site have been developed as smart multifunctional biomaterials for drug delivery. However, most self-healing injectable hydrogels are difficult to control protein release after implantation, owing to the deficiency of pH responsiveness, which reduces the bioavailability of proteins. Herein, we propose a facile strategy to endow pH responsiveness into a dynamic hydrogel with both self-healing and injectable capabilities, by crosslinking biomacromolecular backbones via dual pH sensitive dynamic covalent bond. Particularly, oxidized konjac glucomannan (OKGM) can be crosslinked with poly (aspartic hydrazide) (PAHy) and N-carboxyethyl chitosan (CEC) to form dynamic acylhydrazone bonds and imide bonds, respectively, endowing the hydrogel with pH responsiveness and dynamic behaviors. Specifically, PAHy facilitates the formation of acylhydrazone bonds, improving the mechanical properties and pH sensitivity while reducing the degradation behavior of the hydrogels under physiological conditions. Kinetics indicate that the release of bovine serum albumin follows Fick diffusion under different pH conditions. The pH responsive hydrogel with self-healing injectable capabilities has the potential to be used as a controllable and sustain release carrier for protein drugs.
Collapse
Affiliation(s)
- Chen Xuan Lin
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Kuan Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Peng Cheng Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Li Ting Gao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yasir Aziz
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Jian Hui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
2
|
El Mahamdi M, Daoudi W, Dagdag O, Kim H, Eddaoudy F, Verma DK, Gupta S, Berisha A, Loutou M, Noureddine B, El Aatiaoui A. Integrating experimental and theoretical studies in the development of a novel alginate-based bio-composite for copper anticorrosion in 3.5 % NaCl environments. Int J Biol Macromol 2024; 257:128600. [PMID: 38065448 DOI: 10.1016/j.ijbiomac.2023.128600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
The development of new coatings based on a biopolymer, epichlorohydrin-modified alginate, and alginate-epichlorohydrin-SrTiO3 nanocomposites incorporating SrTiO3 (STO) nanoparticles in the alginate (Alg) matrix (Alg-Ep-STO), has been addressed in this study. Various characterization techniques were employed to analyze the prepared compounds, including X-ray diffraction spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR), as well as surface analysis methods such as Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). Furthermore, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation (PDP) methods were used to evaluate corrosion inhibition and protection durability. The results demonstrate that the incorporation of STO nanoparticles into the alginate matrix with epichlorohydrin significantly improved the metal's resistance to corrosion. The experimental findings received reinforcement from various computational methods, including density functional theory (DFT), Molecular Dynamics (MD) and Monte Carlo (MC) simulations, which were employed to investigate the interactions between the Alg-Ep-STO nanocomposite and the copper surface. The computational outcomes revealed that the Alg-Ep-STO nanocomposite exhibits robust adhesion to the copper surface, maintaining a flat orientation, with its alignment being notably influenced by the presence of STO nanoparticles.
Collapse
Affiliation(s)
- Mohamed El Mahamdi
- Laboratory of Applied Chemistry and Environment (LCAE-URAC18), Department of Chemistry, Faculty of Sciences, University Mohamed I, Po. Box 717, 60000 Oujda, Morocco
| | - Walid Daoudi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco.
| | - Omar Dagdag
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Hansang Kim
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea.
| | - Firdaouss Eddaoudy
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Dakeshwar Kumar Verma
- Department of Chemistry, Govt. Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh 491441, India
| | - Sangeeta Gupta
- Department of Chemistry, Govt. Shivnath Science College, Rajnandgaon, Chhattisgarh 491441, India
| | - Avni Berisha
- Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, 10000 Prishtina, Kosovo
| | - Mohamed Loutou
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Benchat Noureddine
- Laboratory of Applied Chemistry and Environment (LCAE-URAC18), Department of Chemistry, Faculty of Sciences, University Mohamed I, Po. Box 717, 60000 Oujda, Morocco
| | - Abdelmalik El Aatiaoui
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| |
Collapse
|
3
|
Verma Y, Sharma G, Kumar A, Dhiman P, Si C, Stadler FJ. Synthesizing pectin-crosslinked gum ghatti hydrogel for efficient adsorptive removal of malachite green. Int J Biol Macromol 2024; 258:128640. [PMID: 38061515 DOI: 10.1016/j.ijbiomac.2023.128640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Pectin-crosslinked gum ghatti hydrogel (PGH) has been synthesized utilizing pectin and gum ghatti through an uncomplicated and inexpensive copolymerization method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM-elemental mapping), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS) characterization techniques have been employed to determine various structural, chemical and compositional characteristics of fabricated PGH. Three different weight ratios (1:1, 2:1, or 1:2 for pectin and gum ghatti, respectively) were employed to synthesize three distinct types of PGH. Swelling studies has been done to determine the best ratios for PGH fabrication. PGH has been assessed as an adsorbent for the removal of malachite green dye from aqueous solutions. The effects of PGH dosage (100-400 mg/L), dye concentration (10-160 mg/L), pH (2-9 pH), adsorption time (0-480 min), and temperature (25-55 °C) has been examined through batch solutions. According to Langmuir isotherm analysis, the maximum adsorption capacity is 658.1 mg/g. By using pseudo-second-order kinetics and the Freundlich adsorption isotherm, the adsorption process could be well explained. After five consecutive cycles, PGH had an adsorption percentage of 86.917 % for the malachite green dye. It is safe for the environment and may be used to remove malachite green (MG) dye from aqueous solutions.
Collapse
Affiliation(s)
- Yaksha Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China.
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|