1
|
Genomic Analysis of Carbapenem-Resistant Comamonas in Water Matrices: Implications for Public Health and Wastewater Treatments. Appl Environ Microbiol 2022; 88:e0064622. [PMID: 35708324 DOI: 10.1128/aem.00646-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Comamonas spp. are Gram-negative bacteria that catabolize a wide range of organic and inorganic substrates. Comamonas spp. are abundant in aquatic and soil environments, including wastewater, and can cause opportunistic infections in humans. Because of their potential in wastewater bioaugmentation and bioremediation strategies, the identification of Comamonas species harboring genes encoding carbapenemases and other clinically important antibiotic resistance genes warrant further investigation. Here, we present an analysis of 39 whole-genome sequences comprising three Comamonas species from aquatic environments in South Australia that were recovered on media supplemented with carbapenems. The analysis includes a detailed description of 33 Comamonas denitrificans isolates, some of which carried chromosomally acquired blaGES-5, blaOXA, and aminoglycoside resistance (aadA) genes located on putative genomic islands (GIs). All blaGES-5- and blaOXA-containing GIs appear to be unique to this Australian collection of C. denitrificans. Notably, most open reading frames (ORFs) within the GIs, including all antimicrobial resistance (AMR) genes, had adjacent attC sites, indicating that these ORFs are mobile gene cassettes. One C. denitrificans isolate carried an IncP-1 plasmid with genes involved in xenobiotic degradation and response to oxidative stress. Our assessment of the sequences highlights the very distant nature of C. denitrificans to the other Comamonas species and its apparent disposition to acquire antimicrobial resistance genes on putative genomic islands. IMPORTANCE Antimicrobial resistance (AMR) poses a global public health threat, and the increase in resistance to "last-resort drugs," such as carbapenems, is alarming. Wastewater has been flagged as a hot spot for AMR evolution. Comamonas spp. are among the most common bacteria in wastewater and play a role in its bioaugmentation. While the ability of Comamonas species to catabolize a wide range of organic and inorganic substrates is well documented, some species are also opportunistic pathogens. However, data regarding AMR in Comamonas spp. are limited. Here, through the genomic analyses of 39 carbapenem-resistant Comamonas isolates, we make several key observations, including the identification of a subset of C. denitrificans isolates that harbored genomic islands encoding carbapenemase blaGES-5 or extended-spectrum β-lactamase blaOXA alleles. Given the importance of Comamonas species in potential wastewater bioaugmentation and bioremediation strategies, as well as their status as emerging pathogens, the acquisition of critically important antibiotic resistance genes on genomic islands warrants future monitoring.
Collapse
|
2
|
Khan A, Huo Y, Qu Z, Liu Y, Wang Z, Chen Y, Huo M. A facile calcination conversion of groundwater treatment sludge (GTS) as magnetic adsorbent for oxytetracycline adsorption. Sci Rep 2021; 11:5276. [PMID: 33674650 PMCID: PMC7935931 DOI: 10.1038/s41598-021-84231-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/12/2021] [Indexed: 11/08/2022] Open
Abstract
In this paper, groundwater treatment sludge (GTS) was recycled as a magnetic adsorbent via a facile calcination process without adding any reductant. The prepared magnetic adsorbents (MAs) were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS), vibrating sample magnenometer (VSM) and Mössbauer spectroscopy. The results showed that GTS comprised 33.2% Fe, 1.4% Al and 6.2% Si, and exhibited a weak saturation magnetization of 0.0008 emu/g. Without NaOH, the GTS calcinated at 700 and 500 °C were well magnetized with Ms of 20.1 and 7.1 emu/g, separately, but exhibited a low Ms of 0.43 emu/g at 300 °C. By adding NaOH powder, the Ms of GTS apparently increased to 4.9 emu/g after calcination at 300 °C, and further to 8.5 emu/g at 500 °C. In GTS, about 96.1% Fe was involved in ferrihydrite form. The Ms of calcinated GTS was accompanied with the phase transformation of ferrihydrite to maghemite. Si/Al oxides in GTS coordinated on the surface sites of ferrihydrite and inhibited the conjunction and phase transformation of adjacent ferrihydrite particles, but were effectively desorbed as in the presence of NaOH. Na500, preparing by calcinating GTS at 500 °C with NaOH, showed an optimal total surface sites (Hs) of 0.65 mmol/g. Oxytetracycline (OTC) was used as a target for studying the adsorption characteristics of synthetic magnetic adsorbents and a high adsorption capacity of oxytetracycline of 862.1 mg/g in comparison with the other calcinated GTS, and the adsorption data was consistent with the Langmuir model. By adding 6 g/L Na-500, approximately 100% of oxytetracycline and tetracycline and nearly 40% total organic carbon were removed from real pharmaceutical wastewater. With the method, GTS can be converted in mass production to magnetic adsorbent that exhibits effective application in pharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Asghar Khan
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of the Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Yang Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China.
| | - Zhan Qu
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Yanwen Liu
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Zhihua Wang
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Yu Chen
- Jilin Institute of Forestry Survey and Design, Changchun, 130022, China
| | - Mingxin Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
3
|
Zhu S, Wang Z, Lin X, Sun T, Qu Z, Chen Y, Su T, Huo Y. Effective recycling of Cu from electroplating wastewater effluent via the combined Fenton oxidation and hydrometallurgy route. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110963. [PMID: 32579522 DOI: 10.1016/j.jenvman.2020.110963] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals, which commonly occur in complex forms, are difficult to remove in alkali electroplating wastewater effluent, and their resource recycling is rarely reported. Here, a Cu-bearing alkali wastewater effluent was effectively treated through Fenton oxidation, and the generated Fenton sludge was recycled into highly pure tenorite and hematite particles. The effluent contained 1.51 mg/L Cu and was subjected to Fenton oxidation, pH adjustment and coagulation. Amongst the three methods, Fenton oxidation showed superior efficiency to Cu removal, and the residual Cu in the effluent was 0.06 mg/L, thereby meeting the discharge standard for electroplating wastewater. However, Cu removal achieved less than 20% after pH adjustment and coagulation. Cu-bearing sludge, which was generated through the Fenton process, was dissolved in a mixture of hydrochloric and nitric acids. The dissolved solution contained 1.92 g/L Cu and 73.6 g/L Fe impurity. Impure Fe (67.4%) was removed as hematite aggregates after the solution was directly treated via a hydrometallurgy route, whilst 99.2% Cu was kept. When 0.5 mL of methanol was introduced to the hydrometallurgy system, nearly 100% Fe was removed as hematite nanoparticles with 94.8% purity, whilst more than 98% Cu was kept. The residual Cu was 1.88 g/L and precipitated as a tenorite block with a CuO content of 91.1% by adjusting the treated solution to pH 9. This study presented an environment-friendly method for enriching Cu from electroplating wastewater effluent without generating any waste.
Collapse
Affiliation(s)
- Suiyi Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhihua Wang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Xue Lin
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Tong Sun
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhan Qu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yu Chen
- School of Environment, Northeast Normal University, Changchun, 130117, China; Jilin Institute of Forestry Survey and Design, Changchun, 130022, China
| | - Ting Su
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yang Huo
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
4
|
Hu T, Wang H, Ning R, Qiao X, Liu Y, Dong W, Zhu S. Upcycling of Fe-bearing sludge: preparation of erdite-bearing particles for treating pharmaceutical manufacture wastewater. Sci Rep 2020; 10:12999. [PMID: 32747692 PMCID: PMC7400646 DOI: 10.1038/s41598-020-70080-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/23/2020] [Indexed: 11/08/2022] Open
Abstract
Groundwater treatment sludge is a type of solid waste with 9.0-28.9% wt.% Fe content and is precipitated in large quantity from backwash wastewater in groundwater treatment. The sludge is mainly composed of fine particles containing Fe, Si and Al oxides, such as ferrihydrite, quartz and boehmite. The Fe oxides mostly originate from the oxidation of ferrous Fe in groundwater, whilst the silicate/aluminium compounds mainly originate from the broken quartz sand filter in the backwash step. In general, the sludge is firstly coagulated, dewatered by filter pressing and finally undergoes harmless solidification before it is sent to landfills. However, this process is costly (approximately US$66.1/t) and complicated. In this study, groundwater treatment sludge was effectively recycled to prepare novel erdite-bearing particles via a one-step hydrothermal method by adding only Na2S·9H2O. After hydrothermal treatment, the quartz and boehmite of the sludge were dissolved and recrystallised to sodalite, whilst ferrihydrite was converted to an erdite nanorod at 160 °C and a hematite at 240 °C. SP160 was prepared as fine nanorod particles with 200 nm diameter and 2-5 μm length at a hydrothermal temperature of 160 °C. Nearly 100% OTC and its derivatives in pharmaceutical manufacture wastewater were removed by adding 0.1 g SP160. The major mechanism for the removal was the spontaneous hydrolysis of erdite in SP160 to generate Fe oxyhydroxide and use many hydroxyl groups for coordinating OTC and its derivatives. This study presents a novel method for the resource reutilisation of waste groundwater treatment sludge and reports efficient erdite-bearing particles for pharmaceutical manufacture wastewater treatment.
Collapse
Affiliation(s)
- Tongke Hu
- Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Huaimin Wang
- Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Ruyan Ning
- Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Xueling Qiao
- Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Yanwen Liu
- Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Wenqing Dong
- Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Suiyi Zhu
- Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
5
|
Zhu S, Song X, Chen Y, Dong G, Sun T, Yu H, Yu Y, Xie X, Huo M. Upcycling of groundwater treatment sludge to an erdite nanorod as a highly effienct activation agent of peroxymonosulfate for wastewater treatment. CHEMOSPHERE 2020; 252:126586. [PMID: 32229359 DOI: 10.1016/j.chemosphere.2020.126586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 06/10/2023]
Abstract
Groundwater treatment sludge is an Fe-rich waste continuously generated in large amounts through potable water production at groundwater treatment plants. In this study, the sludge was converted to erdite nanorod particles via a one-step hydrothermal route with only adding Na2S. The sludge was a mixture of ferrihydrite, hematite and Si/Al oxides. After hyddrothemal treatment, erdite was primarily formed from ferrihydrite, which accounted for 91.2% of the Fe species in the sludge, whereas approximately 8.8% of hematite accounted for the Fe species that remained before and after the reaction. The produced erdite nanorods were approximately 200 nm in diameter and 1-3 μm in length. They also exhibited a superior efficiency in peroxymonosulfate (PMS) activation. Nearly 100% quinoline removal (initail concentration = 10 mg L-1) was achieved when the eridite nanorods were used with PMS. The removal rate of quinoline was much higher than that of raw sludge, nano-scale zero-valent iron, FeS, hematite and magnetite. The erdite nanorods or the PMS alone had a quinoline removal rate of less than 20%. The erdite nanorods were spontaneously hydrolysed to generate Fe2+ for PMS activation and to form S species for the reductive cycling of Fe3+ to Fe2+, which likely promoted PMS activation. This study not only highlighted a facile method to recycle the sludge for erdite nanorod preparation but also presented a novel nanomaterial that could efficiently activate PMS for organic wastewater treatment.
Collapse
Affiliation(s)
- Suiyi Zhu
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Xiang Song
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Yu Chen
- Jilin Institute of Forestry Survey and Design, Changchun, 130022, China
| | - Ge Dong
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Tong Sun
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Hongbin Yu
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China.
| | - Yang Yu
- School of Chemical Science and Engineering, Longdong University, Qingyang, 745000, China
| | - Xinfeng Xie
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Mingxin Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| |
Collapse
|
6
|
Su T, Han Z, Qu Z, Chen Y, Lin X, Zhu S, Bian R, Xie X. Effective recycling of Co and Sr from Co/Sr-bearing wastewater via an integrated Fe coagulation and hematite precipitation approach. ENVIRONMENTAL RESEARCH 2020; 187:109654. [PMID: 32445948 DOI: 10.1016/j.envres.2020.109654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Flocculant overdose has been considered an inefficient technique for precipitating heavy metals from wastewater at low levels due to the high yield of hazardous waste sludge that should be treated properly before it can be disposed of safely in landfills. This problem was effectively solved in this study via a novel method that recycles sludge separately into high-purity hematite and heavy metal-bearing products. The wastewater, which contained 10.3 mg/L of Co and 4.8 mg/L of Sr, was coagulated by adding ferric salt to generate Co/Sr-bearing sludge. The sludge was dissolved in HNO3, followed by hydrothermal treatment with the addition of organic matter (e.g. methanol or isopropanol). Without the addition of organic matter, only 56.5% of total Fe was removed as irregular hematite particles, whilst Co/Sr remained unchanged in the acid. Over 99.5% of total Fe was eliminated as hematite nanoparticles with 97.7% Fe2O3 content, but more than 98% Co/Sr remained in the acid when methanol with a molar ratio (Mmethanol/MFe) of 5 was added. Nearly 100% Co was precipitated by adjusting the pH of the acid to 8 to generate Co hydroxide with 83.9% purity. Meanwhile, the residual Sr was further precipitated by adding Na2CO3 to generate SrCO3 with 96.8% purity. Isopropanol achieved total Fe removal similar to that of methanol. The optimal molar ratio (MIsopropanol/MFe) was 1, which corresponded to the removal of 98.7% total Fe. Methanol and isopropanol can react with NO3- in acid to reduce NO2- concentration and improve acid pH, promoting hydrolysis followed by the crystallisation of ferric Fe with hematite as the final product. This paper is the first report on an environment-friendly method for enriching Co/Sr without generating any waste.
Collapse
Affiliation(s)
- Ting Su
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhijie Han
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhan Qu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yu Chen
- Jilin Institute of Forestry Survey and Design, Changchun, 130022, China
| | - Xue Lin
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Suiyi Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Rui Bian
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Xinfeng Xie
- Michigan Technological University, School of Forest Resources and Environmental Science, Houghton, MI, 49932, USA
| |
Collapse
|
7
|
Resource Recovery of Waste Nd–Fe–B Scrap: Effective Separation of Fe as High-Purity Hematite Nanoparticles. SUSTAINABILITY 2020. [DOI: 10.3390/su12072624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recycling rare-earth elements from Nd magnet scrap (Nd–Fe–B scrap) is a highly economical process; however, its efficiency is low due to large portions of Fe impurity. In this study, the effective separation of Fe impurity from scrap was performed through an integrated nitric acid dissolution and hydrothermal route with the addition of fructose. Results showed that more than 99% of the scrap was dissolved in nitric acid, and after three dilutions that the Nd, Pr, Dy and Fe concentrations in the diluted acid were 9.01, 2.11, 0.37 and 10.53 g/L, respectively. After the acid was hydrothermally treated in the absence of fructose, only 81.8% Fe was removed as irregular hematite aggregates, whilst more than 98% rare-earth elements were retained. By adding fructose at an Mfructose/Mnitrate ratio of 0.2, 99.94% Fe was precipitated as hematite nanoparticles, and the loss of rare-earth elements was <2%. In the treated acid, the residual Fe was 6.3 mg/L, whilst Nd, Pr and Dy were 8.84, 2.07 and 0.36 g/L, respectively. Such composition was conducive for further recycling of high-purity rare-earth products with low Fe impurity. The generated hematite nanoparticles contained 67.92% Fe with a rare-earth element content of <1%. This value meets the general standard for commercial hematite active pharmaceutical ingredients. In this manner, a green process was developed for separating Fe from Nd–Fe–B scrap without producing secondary waste.
Collapse
|
8
|
Zhu S, Liu Y, Huo Y, Chen Y, Qu Z, Yu Y, Wang Z, Fan W, Peng J, Wang Z. Addition of MnO 2 in synthesis of nano-rod erdite promoted tetracycline adsorption. Sci Rep 2019; 9:16906. [PMID: 31729438 PMCID: PMC6858339 DOI: 10.1038/s41598-019-53420-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/24/2019] [Indexed: 12/01/2022] Open
Abstract
Erdite is a rare sulphide mineral found in mafic and alkaline rocks. Only weakly crystallised fibrous erdite has been artificially synthesised via evaporation or the hydrothermal method, and the process generally requires 1–3 days and large amounts of energy to complete. In this study, well-crystallised erdite nanorods were produced within 3 h by using MnO2 as an auxiliary reagent in a one-step hydrothermal method. Results showed that erdite could synthesised in nanorod form with a diameter of approximately 200 nm and lengths of 0.5–3 μm by adding MnO2; moreover, the crystals grew with increasing MnO2 addition. Without MnO2, erdite particles were generated in irregular form. The capacity of the erdite nanorods for tetracycline (TC) adsorption was 2613.3 mg/g, which is higher than those of irregular erdite and other reported adsorbents. The major adsorption mechanism of the crystals involves a coordinating reaction between the −NH2 group of TC and the hydroxyl group of Fe oxyhydroxide produced from erdite hydrolysis. To the best of our knowledge, this study is the first to synthesise erdite nanorods and use them in TC adsorption. Erdite nanorods may be developed as a new material in the treatment of TC-containing wastewater.
Collapse
Affiliation(s)
- Suiyi Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yanwen Liu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yang Huo
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yu Chen
- Jilin Institute of Forestry Survey and Design, Changchun, 130022, China
| | - Zhan Qu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yang Yu
- Guangdong Shouhui Lantian Engineering and Technology Co., Ltd, Guangzhou, 510075, China
| | - Zhihua Wang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Wei Fan
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Juwei Peng
- School of Civil and Environment, Jilin Jianzu University, Changchun, 130117, China.
| | - Zhaofeng Wang
- Office of Sponge City Construction and Management, Qingyang, 745099, China
| |
Collapse
|
9
|
Self-cleaning Anti-fouling TiO2/Poly(aryl ether sulfone) Composite Ultrafiltration Membranes. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8401-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Bian R, Zhu J, Chen Y, Yu Y, Zhu S, Zhang L, Huo M. Resource recovery of wastewater treatment sludge: synthesis of a magnetic cancrinite adsorbent. RSC Adv 2019; 9:36248-36255. [PMID: 35540593 PMCID: PMC9074915 DOI: 10.1039/c9ra06940b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/01/2019] [Indexed: 11/21/2022] Open
Abstract
Water treatment sludge, which is mechanically dewatered and landfilled as solid waste, is considerably generated in water plants for potable water production. Herein, a novel route to hydrothermally convert this sludge into magnetic particles (MPs) is demonstrated. The sludge comprised amorphous aggregates with a relatively high Al/Si ratio of 3.7 and low Fe content of 8.5 wt%. After hydrothermal treatment, the Al/Si ratio of the MPs was approximated to 1, which was unaffected as the NaOH concentration increased from 2 M to 4 M or 6 M. The amorphous sludge was converted to MPs in the following order: spherical sodalite with a diameter of 3–5 μm, large spherical sodalite with a diameter of 5–10 μm and crystal dendritic cancrinite. Dendritic cancrinite was generated by recrystallisation of amorphous Al/Si oxides with spherical sodalite as the intermediate. With the addition of ascorbic acid, magnetisation of the weakly magnetised sludge increased from 0.11 emu g−1 to 3.6 emu g−1 and 14.8 emu/g by raising the NaOH concentration from 2 M to 4 M and 6 M. The magnetic property was related to the magnetite generated from the reduction of ferrihydrite and hematite in the sludge by the added ascorbic acid. Dendritic cancrinite exhibited an optimal surface site concentration of 0.31 mmol g−1 and desirable adsorption capacity of tetracycline (TC) (482.6 mg g−1), which were twice those of spherical sodalite prepared with 4 M NaOH. This study not only highlights the resource recovery of wastewater treatment sludge for MP preparation but also presents a new and effective adsorbent for treatment of TC-containing wastewater. Water treatment sludge was directly converted into magnetic spherical sodalite and dendritic cancrinite particles, separately. These particles were efficient in tetracycline adsorption.![]()
Collapse
Affiliation(s)
- Rui Bian
- School of Environment
- Northeast Normal University
- Changchun 130117
- China
| | - Junna Zhu
- School of Environment
- Northeast Normal University
- Changchun 130117
- China
- Huiji No. 1 Middle School
| | - Yu Chen
- Jilin Institute of Forestry Survey and Design
- Changchun 130022
- China
| | - Yang Yu
- Guangdong Shouhui Lantian Engineering and Technology Corporation
- Guangzhou 510075
- China
| | - Suiyi Zhu
- School of Environment
- Northeast Normal University
- Changchun 130117
- China
| | - Leilei Zhang
- School of Environment
- Northeast Normal University
- Changchun 130117
- China
| | - Mingxin Huo
- School of Environment
- Northeast Normal University
- Changchun 130117
- China
| |
Collapse
|