1
|
Wu Z, Ye H, Zhang B, Song J, Wang Y, Yao D, Wang C, Xia X, Lei W, Hao Q. CuCo 2O 4 Hollow Microspheres with Graphene Composite Targeting Superior Lithium-Ion Storage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8426-8434. [PMID: 34233119 DOI: 10.1021/acs.langmuir.1c00670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CuCo2O4, a type of promising lithium-ion storage material, exhibits high electrochemical properties in lithium-ion batteries and enormous economic benefits. However, its practical application is limited by problems such as structural collapse and electrochemical stability during the charging and discharging process. In this work, the reduced graphene oxide (rGO)-coated CuCo2O4 (CuCo2O4/rGO) hollow microspheres were successfully prepared by electrostatic self-assembly. The CuCo2O4/rGO electrode shows an outstanding capability for lithium-ion storage and a remarkable rate capacity, e.g., 445 mA h g-1 at 5 A g-1. After 150 cycles at 0.1 A g-1, the reversible capacity of the CuCo2O4/rGO electrode is as high as 1080 mA h g-1, and it can still retain about 530 mA h g-1 in the 400th cycle at 1 A g-1. The hollow microspheres with mesoporous shells can cause electrolyte penetration into the spherical shell to effectively shorten the transfer distance of lithium ions, and the encapsulation of graphene improves the conductivity and stability of CuCo2O4, which endows CuCo2O4/rGO with a wonderful Li+ storage performance. It is proved that this is an efficient method to improve the electrochemical performance of metal compounds for better applications in energy storage.
Collapse
Affiliation(s)
- Zongdeng Wu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, China
| | - Haitao Ye
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, China
| | - Bin Zhang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, China
| | - Juanjuan Song
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, China
| | - Yang Wang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, China
| | - Di Yao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, China
| | - Chengxin Wang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, China
| | - Xifeng Xia
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, China
| | - Wu Lei
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, China
| | - Qingli Hao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, China
| |
Collapse
|
2
|
Wang B, Wu T, Chen G, Liu X, Li W, He Q, Li DS, Guan BY, Liu Y. General Synthesis of Hierarchically Macro/Mesoporous Fe,Ni-Doped CoSe/N-Doped Carbon Nanoshells for Enhanced Electrocatalytic Oxygen Evolution. Inorg Chem 2021; 60:6782-6789. [DOI: 10.1021/acs.inorgchem.1c00620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Binhang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tianyu Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wen Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qingxia He
- Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dong-Sheng Li
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| | - Bu Yuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
3
|
Li L, Dong G, Zhao H, Xu Y, Zhang XF, Cheng X, Gao S, Huo LH. Coral-like CoMoO4 hierarchical structure uniformly encapsulated by graphene-like N-doped carbon network as an anode for high-performance lithium-ion batteries. J Colloid Interface Sci 2021; 586:11-19. [DOI: 10.1016/j.jcis.2020.10.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/10/2020] [Accepted: 10/18/2020] [Indexed: 01/28/2023]
|
4
|
He Y, Li C, Chen X, Rao H, Shi Z, Feng S. Critical Aspects of Metal-Organic Framework-Based Materials for Solar-Driven CO 2 Reduction into Valuable Fuels. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000082. [PMID: 33552555 PMCID: PMC7857132 DOI: 10.1002/gch2.202000082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Photoreduction of CO2 into value-added fuels is one of the most promising strategies for tackling the energy crisis and mitigating the "greenhouse effect." Recently, metal-organic frameworks (MOFs) have been widely investigated in the field of CO2 photoreduction owing to their high CO2 uptake and adjustable functional groups. The fundamental factors and state-of-the-art advancements in MOFs for photocatalytic CO2 reduction are summarized from the critical perspectives of light absorption, carrier dynamics, adsorption/activation, and reaction on the surface of photocatalysts, which are the three main critical aspects for CO2 photoreduction and determine the overall photocatalytic efficiency. In view of the merits of porous materials, recent progress of three other types of porous materials are also briefly summarized, namely zeolite-based, covalent-organic frameworks based (COFs-based), and porous semiconductor or organic polymer based photocatalysts. The remarkable performance of these porous materials for solar-driven CO2 reduction systems is highlighted. Finally, challenges and opportunities of porous materials for photocatalytic CO2 reduction are presented, aiming to provide a new viewpoint for improving the overall photocatalytic CO2 reduction efficiency with porous materials.
Collapse
Affiliation(s)
- Yiqiang He
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchun130012P. R. China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchun130012P. R. China
| | - Xiao‐Bo Chen
- School of EngineeringRMIT UniversityCarltonVIC3053Australia
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchun130012P. R. China
- International Center of Future ScienceJilin UniversityChangchun130012P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchun130012P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|