1
|
Nagappan S, Minhas H, Urkude RR, Pathak B, Kundu S. Harnessing the Synergistic Effects of Ir Co-Decorated NiMn-LDH: a Multi-Analytical Approach to Boost Electrocatalytic Overall Water Splitting Activity in Alkaline Condition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500081. [PMID: 40033908 DOI: 10.1002/smll.202500081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Fine control over the Ir precursor to the Nickel-based layered double hydroxides (LDHs) is significant for decorating both single atoms (SA) and nanoclusters (NC), thus modulating catalytic kinetics and improving overall performance. In this study, NiMn-LDH is synthesized and co-decorated it with Iridium, introducing a new pathway for developing efficient bifunctional electrocatalysts in water-splitting technologies. Additionally, a typical fibrous material has developed by immobilizing.I r SA - I r N C 12 - NiMn - LDH ${\mathrm{I}}{{{\mathrm{r}}}^{{\mathrm{SA}}}} - {\mathrm{I}}{{{\mathrm{r}}}^{{\mathrm{N}}{{{\mathrm{C}}}_{12}}}} - {\mathrm{NiMn}} - {\mathrm{LDH}}$ onto PAN (polyacrylonitrile) nanofibers (I r SA - I r N C 12 - NiMn - LDH - F ${\mathrm{I}}{{{\mathrm{r}}}^{{\mathrm{SA}}}} - {\mathrm{I}}{{{\mathrm{r}}}^{{\mathrm{N}}{{{\mathrm{C}}}_{12}}}} - {\mathrm{NiMn}} - {\mathrm{LDH}} - {\mathrm{F}}$ ) using a feasible electrospinning technique. Notably, the catalyst exhibits low overpotentials of 249 and 110 mV for oxygen (OER) and hydrogen evolution reactions (HER) at 10 mA cm- 2, and a low cell voltage of 1.65 V for total water splitting (TWS). Additionally,I r SA - I r N C 12 - NiMn - LDH - F ${\mathrm{I}}{{{\mathrm{r}}}^{{\mathrm{SA}}}} - {\mathrm{I}}{{{\mathrm{r}}}^{{\mathrm{N}}{{{\mathrm{C}}}_{12}}}} - {\mathrm{NiMn}} - {\mathrm{LDH}} - {\mathrm{F}}$ remained stable and effective in alkaline OER, HER, and TWS for over 50 h. Furthermore, X-ray adsorption near-edge spectrum (XANES) experiments, together with theoretical calculations, show that the synergistic effect of IrSA andI r N C 12 ${\mathrm{I}}{{{\mathrm{r}}}^{{\mathrm{N}}{{{\mathrm{C}}}_{12}}}}$ which helps to enhance the catalytic activity, promoting electron rearrangement and lowering the reaction energy barrier.
Collapse
Affiliation(s)
- Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630006, India
| | - Harpriya Minhas
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Rajashri R Urkude
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630006, India
| |
Collapse
|
2
|
Shen Y, Zhao S, Wu F, Zhang H, Zhu L, Wu M, Tian T, Tang H. High Catalytic Selectivity of Electron/Proton Dual-Conductive Sulfonated Polyaniline Micropore Encased IrO 2 Electrocatalyst by Screening Effect for Oxygen Evolution of Seawater Electrolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412862. [PMID: 39630053 PMCID: PMC11775546 DOI: 10.1002/advs.202412862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/17/2024] [Indexed: 01/30/2025]
Abstract
Acidic seawater electrolysis offers significant advantages in high efficiency and sustainable hydrogen production. However, in situ electrolysis of acidic seawater remains a challenge. Herein, a stable and efficient catalyst (SPTTPAB/IrO2) is developed by coating iridium oxide (IrO2) with a microporous conjugated organic framework functionalized with sulfonate groups (-SO3H) to tackle these challenges. The SPTTPAB/IrO2 presents a -SO3H concentration of 5.62 × 10-4 mol g-1 and micropore below 2 nm numbering 1.026 × 1016 g-1. Molecular dynamics simulations demonstrate that the conjugated organic framework blocked 98.62% of Cl- in seawater from reaching the catalyst. This structure combines electron conductivity from the organic framework and proton conductivity from -SO3H, weakens the Cl- adsorption, and suppresses metal-chlorine coupling, thus enhancing the catalytic activity and selectivity. As a result, the overpotential for the oxygen evolution reaction (OER) is only 283 mV@10 mA cm-2, with a Tafel slope of 16.33 mV dec-1, which reduces 13.8% and 37.8% compared to commercial IrO2, respectively. Impressively, SPTTPAB/IrO2 exhibits outstanding seawater electrolysis performance, with a 35.3% improvement over IrO2 to 69 mA cm-2@1.9 V, while the degradation rate (0.018 mA h-1) is only 24.6% of IrO2. This study offers an innovative solution for designing high-performance seawater electrolysis electrocatalysts.
Collapse
Affiliation(s)
- Yuhan Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Shengqiu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- National Energy Key Laboratory for New Hydrogen‐Ammonia Energy TechnologiesFoshan Xianhu LaboratoryFoshan528200P. R. China
| | - Fanglin Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Hao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Liyan Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Mingjuan Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Tian Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- National Energy Key Laboratory for New Hydrogen‐Ammonia Energy TechnologiesFoshan Xianhu LaboratoryFoshan528200P. R. China
- Hubei Key Laboratory of Fuel CellWuhan430070P. R. China
| |
Collapse
|
3
|
Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, Aftab U, Sun H, Arandiyan H. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem Commun (Camb) 2024; 60:5104-5135. [PMID: 38625567 DOI: 10.1039/d3cc06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Abdul Hanan
- Sunway Center for Electrochemical Energy and Sustainable Technology, SCEEST, Sunway University, Bandar Sunway, Malaysia
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, P. R. China
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Mukhtiar Ahmed
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, 066004 Qinhuangdao, P. R. China
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Wang Y, Wang T, Arandiyan H, Song G, Sun H, Sabri Y, Zhao C, Shao Z, Kawi S. Advancing Catalysts by Stacking Fault Defects for Enhanced Hydrogen Production: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313378. [PMID: 38340031 DOI: 10.1002/adma.202313378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Green hydrogen, derived from water splitting powered by renewable energy such as solar and wind energy, provides a zero-emission solution crucial for revolutionizing hydrogen production and decarbonizing industries. Catalysts, particularly those utilizing defect engineering involving the strategical introduction of atomic-level imperfections, play a vital role in reducing energy requirements and enabling a more sustainable transition toward a hydrogen-based economy. Stacking fault (SF) defects play an important role in enhancing the electrocatalytic processes by reshaping surface reactivity, increasing active sites, improving reactants/product diffusion, and regulating electronic structure due to their dense generation ability and profound impact on catalyst properties. This review explores SF in metal-based materials, covering synthetic methods for the intentional introduction of SF and their applications in hydrogen production, including oxygen evolution reaction, photo- and electrocatalytic hydrogen evolution reaction, overall water splitting, and various other electrocatalytic processes such as oxygen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. Finally, this review addresses the challenges associated with SF-based catalysts, emphasizing the importance of a detailed understanding of the properties of SF-based catalysts to optimize their electrocatalytic performance. It provides a comprehensive overview of their various applications in electrocatalytic processes, providing valuable insights for advancing sustainable energy technologies.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Tian Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Guoqiang Song
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD, Delft, Netherlands
| | - Ylias Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
5
|
Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H. Recent Progress on Nickel- and Iron-Based Metallic Organic Frameworks for Oxygen Evolution Reaction: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2465-2486. [PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaomin Liu
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
6
|
Arandiyan H, S Mofarah S, Sorrell CC, Doustkhah E, Sajjadi B, Hao D, Wang Y, Sun H, Ni BJ, Rezaei M, Shao Z, Maschmeyer T. Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chem Soc Rev 2021; 50:10116-10211. [PMID: 34542117 DOI: 10.1039/d0cs00639d] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxide perovskites have emerged as an important class of materials with important applications in many technological areas, particularly thermocatalysis, electrocatalysis, photocatalysis, and energy storage. However, their implementation faces numerous challenges that are familiar to the chemist and materials scientist. The present work surveys the state-of-the-art by integrating these two viewpoints, focusing on the critical role that defect engineering plays in the design, fabrication, modification, and application of these materials. An extensive review of experimental and simulation studies of the synthesis and performance of oxide perovskites and devices containing these materials is coupled with exposition of the fundamental and applied aspects of defect equilibria. The aim of this approach is to elucidate how these issues can be integrated in order to shed light on the interpretation of the data and what trajectories are suggested by them. This critical examination has revealed a number of areas in which the review can provide a greater understanding. These include considerations of (1) the nature and formation of solid solutions, (2) site filling and stoichiometry, (3) the rationale for the design of defective oxide perovskites, and (4) the complex mechanisms of charge compensation and charge transfer. The review concludes with some proposed strategies to address the challenges in the future development of oxide perovskites and their applications.
Collapse
Affiliation(s)
- Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia. .,Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia.
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Esmail Doustkhah
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Baharak Sajjadi
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Derek Hao
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yuan Wang
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia. .,School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hongyu Sun
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mehran Rezaei
- Catalyst and Nanomaterials Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6845, Australia. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Zhong X, Huang K, Zhang Y, Wang Y, Feng S. Constructed Interfacial Oxygen-Bridge Chemical Bonding in Core-Shell Transition Metal Phosphides/Carbon Hybrid Boosting Oxygen Evolution Reaction. CHEMSUSCHEM 2021; 14:2188-2197. [PMID: 33650205 DOI: 10.1002/cssc.202100129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/19/2021] [Indexed: 06/12/2023]
Abstract
A designed structure which CoP nanoparticles (NPs) ingeniously connected with graphene-like carbon layer via in-situ generated interfacial oxygen-bridge chemical bonding was achieved by a mild phosphorization treatment. The results proved that the presence of phosphorus vacancies is a crucial factor enabling formation of Co-O-C bonds. The direct coupling of edge Co of CoP with the oxygen from functional groups on the carbon layer was proposed. As a catalyst for electrocatalytic water splitting, the manufactured Fe2 O3 @C@CoP core-shell structure manifested a low overpotential of 230 mV, a low Tafel slope of 55 mV dec-1 , and long-term stability. Density functional theory calculations verified that the Co-O-C bond played a critical role in decreasing the thermodynamic energy barrier of reaction rate-determining step for the oxygen evolution reaction (OER). This synthetic route might be extended to construct metal-O-C bonds in other transition metal phosphides (or selenides, sulfides)/carbon composites for highly efficient OER catalysts.
Collapse
Affiliation(s)
- Xia Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|