1
|
Chen J, Song Y, Ma L, Jin Y, Yu J, Guo Y, Huang Y, Pu X. Computational insights into diverse binding modes of the allosteric modulator and their regulation on dopamine D1 receptor. Comput Biol Med 2024; 173:108283. [PMID: 38552278 DOI: 10.1016/j.compbiomed.2024.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Allosteric drugs hold the promise of addressing many challenges in the current drug development of GPCRs. However, the molecular mechanism underlying their allosteric modulations remain largely elusive. The dopamine D1 receptor (DRD1), a member of Class A GPCRs, is critical for treating psychiatric disorders, and LY3154207 serves as its promising positive allosteric modulator (PAM). In the work, we utilized extensive Gaussian-accelerated molecular dynamics simulations (a total of 41μs) for the first time probe the diverse binding modes of the allosteric modulator and their regulation effects, based on the DRD1 and LY3154207 as representative. Our simulations identify four binding modes of LY3154207 (one boat mode, two metastable vertical modes and a novel cleft-anchored mode), in which the boat mode is the most stable while there three modes are similar in the stability. However, it is interesting to observed that the most stable boat mode inversely exhibits the weakest positive allosteric effect on influencing the orthosteric ligand binding and maintaining the activity of the transducer binding site. It should result from its induced weaker correlation between the allosteric site and the orthosteric site, and between the orthosteric site and the transducer binding site than the other three binding modes, as well as its weakened interaction between a crucial activation-related residue (S2025.46) and the orthosteric ligand (dopamine). Overall, the work offers atomic-level information to advance our understanding of the complex allosteric regulation on GPCRs, which is beneficial to the allosteric modulator design and development.
Collapse
Affiliation(s)
- Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yuanpeng Song
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Luhan Ma
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yizhou Jin
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jin Yu
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yan Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
2
|
Yi LX, Tan EK, Zhou ZD. Tyrosine Hydroxylase Inhibitors and Dopamine Receptor Agonists Combination Therapy for Parkinson's Disease. Int J Mol Sci 2024; 25:4643. [PMID: 38731862 PMCID: PMC11083272 DOI: 10.3390/ijms25094643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
There are currently no disease-modifying therapies for Parkinson's disease (PD), a progressive neurodegenerative disorder associated with dopaminergic neuronal loss. There is increasing evidence that endogenous dopamine (DA) can be a pathological factor in neurodegeneration in PD. Tyrosine hydroxylase (TH) is the key rate-limiting enzyme for DA generation. Drugs that inhibit TH, such as alpha-methyltyrosine (α-MT), have recently been shown to protect against neurodegeneration in various PD models. DA receptor agonists can activate post-synaptic DA receptors to alleviate DA-deficiency-induced PD symptoms. However, DA receptor agonists have no therapeutic effects against neurodegeneration. Thus, a combination therapy with DA receptor agonists plus TH inhibitors may be an attractive therapeutic approach. TH inhibitors can protect and promote the survival of remaining dopaminergic neurons in PD patients' brains, whereas DA receptor agonists activate post-synaptic DA receptors to alleviate PD symptoms. Additionally, other PD drugs, such as N-acetylcysteine (NAC) and anticholinergic drugs, may be used as adjunctive medications to improve therapeutic effects. This multi-drug cocktail may represent a novel strategy to protect against progressive dopaminergic neurodegeneration and alleviate PD disease progression.
Collapse
Affiliation(s)
- Ling Xiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore;
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore;
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore;
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
3
|
Jing XZ, Yang HJ, Taximaimaiti R, Wang XP. Advances in the Therapeutic Use of Non-Ergot Dopamine Agonists in the Treatment of Motor and Non-Motor Symptoms of Parkinson's Disease. Curr Neuropharmacol 2023; 21:1224-1240. [PMID: 36111769 PMCID: PMC10286583 DOI: 10.2174/1570159x20666220915091022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA) agonists, as an excellent dopamine replacement therapy for patients with early and advanced Parkinson's disease (PD), play a vital role in controlling motor and several nonmotor symptoms. Besides, the application of DA agonists may delay levodopa therapy and the associated risk of motor complications. Indeed, each DA agonist has unique pharmacokinetic and pharmacodynamic characteristics and therefore has different therapeutic efficacy and safety profile. The comorbidities, significant non-motor manifestations, concomitant medications, and clinical features of PD individuals should guide the selection of a specific DA agonist to provide a more patient-tailored treatment option. Thorough knowledge of DA agonists helps clinicians better balance clinical efficacy and side effects. Therefore, this review refers to recent English-written articles on DA agonist therapy for PD patients and summarizes the latest findings on non-ergot DA agonists as well as the advantages and disadvantages of each compound to help clinicians in the selection of a specific DA agonist. In addition, novel D1/D5 partial agonists and new formulations of DA agonists are also discussed.
Collapse
Affiliation(s)
- Xiao-Zhong Jing
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of Neurology, TongRen Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hui-Jia Yang
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Reyisha Taximaimaiti
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiao-Ping Wang
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of Neurology, TongRen Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Targeting G Protein-Coupled Receptors in the Treatment of Parkinson's Disease. J Mol Biol 2022:167927. [PMID: 36563742 DOI: 10.1016/j.jmb.2022.167927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD.
Collapse
|
5
|
Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson's disease and neurodegeneration with brain iron accumulation disorders. Neurobiol Dis 2022; 175:105920. [DOI: 10.1016/j.nbd.2022.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
|
6
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
7
|
Current Therapies in Clinical Trials of Parkinson's Disease: A 2021 Update. Pharmaceuticals (Basel) 2021; 14:ph14080717. [PMID: 34451813 PMCID: PMC8398928 DOI: 10.3390/ph14080717] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that currently has no cure, but treatments are available to improve PD symptoms and maintain quality of life. In 2020, about 10 million people worldwide were living with PD. In 1970, the United States Food and Drug Administration approved the drug levodopa as a dopamine replacement to manage PD motor symptoms; levodopa-carbidopa combination became commercialized in 1975. After over 50 years of use, levodopa is still the gold standard for PD treatment. Unfortunately, levodopa therapy-induced dyskinesia and OFF symptoms remain unresolved. Therefore, we urgently need to analyze each current clinical trial's status and therapeutic strategy to discover new therapeutic approaches for PD treatment. We surveyed 293 registered clinical trials on ClinicalTrials.gov from 2008 to 16 June 2021. After excluded levodopa/carbidopa derivative add-on therapies, we identified 47 trials as PD treatment drugs or therapies. Among them, 19 trials are in phase I (41%), 25 trials are in phase II (53%), and 3 trials are in phase III (6%). The three phase-III trials use embryonic dopamine cell implant, 5-HT1A receptor agonist (sarizotan), and adenosine A2A receptor antagonist (caffeine). The therapeutic strategy of each trial shows 29, 5, 1, 5, 5, and 2 trials use small molecules, monoclonal antibodies, plasma therapy, cell therapy, gene therapy, and herbal extract, respectively. Additionally, we discuss the most potent drug or therapy among these trials. By systematically updating the current trial status and analyzing the therapeutic strategies, we hope this review can provide new ideas and insights for PD therapy development.
Collapse
|
8
|
Wilbraham D, Biglan KM, Svensson KA, Tsai M, Kielbasa W. Safety, Tolerability, and Pharmacokinetics of Mevidalen (LY3154207), a Centrally Acting Dopamine D1 Receptor-Positive Allosteric Modulator (D1PAM), in Healthy Subjects. Clin Pharmacol Drug Dev 2021; 10:393-403. [PMID: 33029934 PMCID: PMC8048550 DOI: 10.1002/cpdd.874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
Activation of the brain dopamine D1 receptor has attracted attention because of its promising role in neuropsychiatric diseases. Although efforts to develop D1 agonists have been challenging, a positive allosteric modulator (PAM), represents an attractive approach with potential better drug-like properties. Phase 1 single-ascending-dose (SAD; NCT03616795) and multiple-ascending-dose (MAD; NCT02562768) studies with the D1PAM mevidalen (LY3154207) were conducted with healthy subjects. There were no treatment-related serious adverse events (AEs) in these studies. In the SAD study, 25-200 mg administered orally showed dose-proportional pharmacokinetics (PK) and acute dose-related increases in systolic blood pressure (SBP) and diastolic blood pressure DBP) and pulse rate at doses ≥ 75 mg. AE related to central activation were seen at doses ≥ 75 mg. At 25 and 75 mg, central penetration of mevidalen was confirmed by measurement of mevidalen in cerebrospinal fluid. In the MAD study, once-daily doses of mevidalen at 15-150 mg for 14 days showed dose-proportional PK. Acute dose-dependent increases in SBP, DBP, and PR were observed on initial administration, but with repeated dosing the effects diminished and returned toward baseline levels. Overall, these findings support further investigation of mevidalen as a potential treatment for a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Max Tsai
- Eli Lilly and CompanyIndianapolisIndianaUSA
| | | |
Collapse
|
9
|
Xiao P, Yan W, Gou L, Zhong YN, Kong L, Wu C, Wen X, Yuan Y, Cao S, Qu C, Yang X, Yang CC, Xia A, Hu Z, Zhang Q, He YH, Zhang DL, Zhang C, Hou GH, Liu H, Zhu L, Fu P, Yang S, Rosenbaum DM, Sun JP, Du Y, Zhang L, Yu X, Shao Z. Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. Cell 2021; 184:943-956.e18. [PMID: 33571432 PMCID: PMC11005940 DOI: 10.1016/j.cell.2021.01.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.
Collapse
Affiliation(s)
- Peng Xiao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Gou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ya-Ni Zhong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liangliang Kong
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Yuan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sheng Cao
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Changxiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan-Cheng Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Anjie Xia
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenquan Hu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qianqian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yong-Hao He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Dao-Lai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Chao Zhang
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Gui-Hua Hou
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| | - Yang Du
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
10
|
Zhang CL, Han QW, Chen NH, Yuan YH. Research on developing drugs for Parkinson's disease. Brain Res Bull 2020; 168:100-109. [PMID: 33387636 DOI: 10.1016/j.brainresbull.2020.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/28/2022]
Abstract
Current treatments for Parkinson's disease (PD) are mainly dopaminergic drugs. However, dopaminergic drugs are only symptomatic treatments and limited by several side effects. Recent studies into drug development focused on emerging new molecular mechanisms, including nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nuclear receptor-related 1 (Nurr1), adenosine receptor A2, nicotine receptor, metabotropic glutamate receptors (mGluRs), and glucocerebrosidase (GCase). Also, immunotherapy and common pathological mechanisms shared with Alzheimer's Disease (AD) and diabetes have attracted much attention. In this review, we summarized the development of preclinical and clinical studies of novel drugs and the improvement of dopaminergic drugs to provide a prospect for PD treatment.
Collapse
Affiliation(s)
- Cheng-Lu Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qi-Wen Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Cerri S, Blandini F. An update on the use of non-ergot dopamine agonists for the treatment of Parkinson's disease. Expert Opin Pharmacother 2020; 21:2279-2291. [PMID: 32804544 DOI: 10.1080/14656566.2020.1805432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Long-term treatment of Parkinson's disease (PD) with levodopa is hampered by motor complications related to the inability of residual nigrostriatal neurons to convert levodopa to dopamine (DA) and use it appropriately. This generated a tendency to postpone levodopa, favoring the initial use of DA agonists, which directly stimulate striatal dopaminergic receptors. Use of DA agonists, however, is associated with multiple side effects and their efficacy is limited by suboptimal bioavailability. AREAS COVERED This paper reviewed the latest preclinical and clinical findings on the efficacy and adverse effects of non-ergot DA agonists, discussing the present and future of this class of compounds in PD therapy. EXPERT OPINION The latest findings confirm the effectiveness of DA agonists as initial treatment or adjunctive therapy to levodopa in advanced PD, but a more conservative approach to their use is emerging, due to the complexity and repercussions of their side effects. As various factors may increase the individual risk to side effects, assessing such risk and calibrating the use of DA agonists accordingly may become extremely important in the clinical management of PD, as well as the availability of new DA agonists with better profiles of safety and efficacy.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation , Pavia, Italy
| | - Fabio Blandini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation , Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia , Pavia, Italy
| |
Collapse
|
12
|
Recent advances in dopaminergic strategies for the treatment of Parkinson's disease. Acta Pharmacol Sin 2020; 41:471-482. [PMID: 32112042 PMCID: PMC7471472 DOI: 10.1038/s41401-020-0365-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease worldwide. However, there is no available therapy reversing the neurodegenerative process of PD. Based on the loss of dopamine or dopaminergic dysfunction in PD patients, most of the current therapies focus on symptomatic relief to improve patient quality of life. As dopamine replacement treatment remains the most effective symptomatic pharmacotherapy for PD, herein we provide an overview of the current pharmacotherapies, summarize the clinical development status of novel dopaminergic agents, and highlight the challenge and opportunity of emerging preclinical dopaminergic approaches aimed at managing the features and progression of PD.
Collapse
|
13
|
Hao J, Beck JP, Schaus JM, Krushinski JH, Chen Q, Beadle CD, Vidal P, Reinhard MR, Dressman BA, Massey SM, Boulet SL, Cohen MP, Watson BM, Tupper D, Gardinier KM, Myers J, Johansson AM, Richardson J, Richards DS, Hembre EJ, Remick DM, Coates DA, Bhardwaj RM, Diseroad BA, Bender D, Stephenson G, Wolfangel CD, Diaz N, Getman BG, Wang XS, Heinz BA, Cramer JW, Zhou X, Maren DL, Falcone JF, Wright RA, Mitchell SN, Carter G, Yang CR, Bruns RF, Svensson KA. Synthesis and Pharmacological Characterization of 2-(2,6-Dichlorophenyl)-1-((1 S,3 R)-5-(3-hydroxy-3-methylbutyl)-3-(hydroxymethyl)-1-methyl-3,4-dihydroisoquinolin-2(1 H)-yl)ethan-1-one (LY3154207), a Potent, Subtype Selective, and Orally Available Positive Allosteric Modulator of the Human Dopamine D1 Receptor. J Med Chem 2019; 62:8711-8732. [PMID: 31532644 DOI: 10.1021/acs.jmedchem.9b01234] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clinical development of catechol-based orthosteric agonists of the dopamine D1 receptor has thus far been unsuccessful due to multiple challenges. To address these issues, we identified LY3154207 (3) as a novel, potent, and subtype selective human D1 positive allosteric modulator (PAM) with minimal allosteric agonist activity. Conformational studies showed LY3154207 adopts an unusual boat conformation, and a binding pose with the human D1 receptor was proposed based on this observation. In contrast to orthosteric agonists, LY3154207 showed a distinct pharmacological profile without a bell-shaped dose-response relationship or tachyphylaxis in preclinical models. Identification of a crystalline form of free LY3154207 from the discovery lots was not successful. Instead, a novel cocrystal form with superior solubility was discovered and determined to be suitable for development. This cocrystal form was advanced to clinical development as a potential first-in-class D1 PAM and is now in phase 2 studies for Lewy body dementia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Daniel S Richards
- AMRI UK Ltd , Erl Wood Manor, Sunninghill Road , Windlesham , Surrey , GU20 6PH , United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tao D, Wang Y, Bao XQ, Yang BB, Gao F, Wang L, Zhang D, Li L. Discovery of coumarin Mannich base derivatives as multifunctional agents against monoamine oxidase B and neuroinflammation for the treatment of Parkinson's disease. Eur J Med Chem 2019; 173:203-212. [DOI: 10.1016/j.ejmech.2019.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022]
|
15
|
Wang M, Datta D, Enwright J, Galvin V, Yang ST, Paspalas C, Kozak R, Gray DL, Lewis DA, Arnsten AFT. A novel dopamine D1 receptor agonist excites delay-dependent working memory-related neuronal firing in primate dorsolateral prefrontal cortex. Neuropharmacology 2019; 150:46-58. [PMID: 30858103 PMCID: PMC6475613 DOI: 10.1016/j.neuropharm.2019.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/10/2023]
Abstract
Decades of research have emphasized the importance of dopamine (DA) D1 receptor (D1R) mechanisms to dorsolateral prefrontal cortex (dlPFC) working memory function, and the hope that D1R agonists could be used to treat cognitive disorders. However, existing D1R agonists all have had high affinity for D1R, and engage β-arrestin signaling, and these agonists have suppressed task-related neuronal firing. The current study provides the first physiological characterization of a novel D1R agonist, PF-3628, with low affinity for D1R -more similar to endogenous DA actions- as well as little engagement of β-arrestin signaling. PF-3628 was applied by iontophoresis directly onto dlPFC neurons in aged rhesus monkeys performing a delay-dependent working memory task. Aged monkeys have naturally-occurring loss of DA, and naturally-occurring reductions in dlPFC neuronal firing and working memory performance. We found the first evidence of excitatory actions of a D1R agonist on dlPFC task-related firing, and this PF-3628 beneficial response was blocked by co-application of a D1R antagonist. These D1R actions likely occur on pyramidal cells, based on previous immunoelectron microscopic studies showing expression of D1R on layer III spines, and current microarray experiments showing that D1R are four times more prevalent in pyramidal cells than in parvalbumin-containing interneurons laser-captured from layer III of the human dlPFC. These results encourage the translation of D1R mechanisms from monkey to human, with the hope PF-3628 and related, novel D1R agonists will be more appropriate for enhancing dlPFC cognitive functions in patients with mental disorders.
Collapse
Affiliation(s)
- Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - John Enwright
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Veronica Galvin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sheng-Tao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Constantinos Paspalas
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Rouba Kozak
- Pfizer Inc, Internal Medicine Unit, Pfizer Inc., 1 Portland St., Cambridge, MA, 02139, USA
| | - David L Gray
- Pfizer Inc, Internal Medicine Unit, Pfizer Inc., 1 Portland St., Cambridge, MA, 02139, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
16
|
Hall A, Provins L, Valade A. Novel Strategies To Activate the Dopamine D 1 Receptor: Recent Advances in Orthosteric Agonism and Positive Allosteric Modulation. J Med Chem 2018; 62:128-140. [PMID: 30525590 DOI: 10.1021/acs.jmedchem.8b01767] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The five dopamine receptor subtypes (D1-5) are activated by the endogenous catecholamine dopamine. Sustained research has sought to identify selective ligands for receptor subtypes. In particular, activation of the D1 receptor has attracted attention due to its promising role in neurological diseases. Initial attempts to identify agonists yielded catechol derivatives, mimicking dopamine, with suboptimal DMPK parameters and low selectivity over the D5 subtype. However, more recent efforts to identify ligands capable of activating the D1 receptor have made substantial progress with the identification of non-catechol agonists with suitable properties to progress to clinical studies. In addition, several research groups have identified positive allosteric modulators that offer new potential. Furthermore, structural studies have surprisingly uncovered two potential allosteric binding sites, the most characterized of which appears to be on intracellular loop 2 (ICL2). This review highlights the recent progress in the field, covering both orthosteric and allosteric modes of activation, discusses the elucidation of the allosteric binding sites, and summarizes the clinical development status of various compounds.
Collapse
Affiliation(s)
- Adrian Hall
- UCB Pharma , Avenue de l'Industrie , Braine-L'Alleud 1420 , Belgium
| | - Laurent Provins
- UCB Pharma , Avenue de l'Industrie , Braine-L'Alleud 1420 , Belgium
| | - Anne Valade
- UCB Pharma , Avenue de l'Industrie , Braine-L'Alleud 1420 , Belgium
| |
Collapse
|