1
|
Hsueh JC, Van Hersh AT, Zhao W. Immunodeficiency: Burden of Illness. Allergy Asthma Proc 2024; 45:294-298. [PMID: 39294910 DOI: 10.2500/aap.2024.45.240060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Immunodeficiency disorders pose substantial burdens on the health-care system and the patients affected. Broadly, immunodeficiencies can be divided into primary immunodeficiency disorders (PIDDs) and secondary immunodeficiency disorders. This review will focus on PIDDs. The overall prevalence for PIDDs is estimated to be ∼1-2% of the population but may be underestimated due to underdiagnosis of these conditions. PIDDs affect males slightly more often than females. The mortality rates differ based on the specific condition but can be extremely high if the condition is left undiagnosed or untreated. The most common causes of death are infections, respiratory complications, and cancers (e.g., lymphoma). Comorbidities and complications include infection, chronic lung disease, granulomatous lymphocytic interstitial lung disease, and autoimmune disorders. The disease burden of patients with common variable immunodeficiency (CVID) is estimated to be greater than patients with diabetes mellitus and chronic obstructive pulmonary disease. PIDDs have a serious impact on the quality of life of the patients, including sleep disturbance, anxiety, and social participation as well as other psychosocial burdens associated with these disorders. The financial cost of PIDDs can be substantial, with the cost of untreated CVID estimated to be $111,053 per patient per year. Indirect costs include productivity loss and time lost due to infusion and hospital visits. Secondary immunodeficiency is not fully discussed in this review but likely contributes equally to the burden of overall immunodeficiency disorders. Management of patients with PIDDs should use a comprehensive approach, including medical, nursing, psychiatric, and quality of life, to improve the outcome.
Collapse
|
2
|
Al-Tamemi S, Al-Zadjali S, Bruwer Z, Naseem SUR, Al-Siyabi N, ALRawahi M, Alkharusi K, Al-Thihli K, Al-Murshedi F, AlSayegh A, Al-Maawali A, Dennison D. Genetic Causes, Clinical Features, and Survival of Underlying Inborn Errors of Immunity in Omani Patients: a Single-Center Study. J Clin Immunol 2023; 43:452-465. [PMID: 36324046 DOI: 10.1007/s10875-022-01394-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Early identification of inborn errors of immunity (IEIs) is crucial due to the significant risk of morbidity and mortality. This study aimed to describe the genetic causes, clinical features, and survival rate of IEIs in Omani patients. METHODS A prospective study of all Omani patients evaluated for immunodeficiency was conducted over a 17-year period. Clinical features and diagnostic immunological findings were recorded. Targeted gene testing was performed in cases of obvious immunodeficiency. For cases with less conclusive phenotypes, a gene panel was performed, followed by whole-exome sequencing if necessary. RESULTS A total of 185 patients were diagnosed with IEIs during the study period; of these, 60.5% were male. Mean ages at symptom onset and diagnosis were 30.0 and 50.5 months, respectively. Consanguinity and a family history of IEIs were present in 86.9% and 50.8%, respectively. Most patients presented with lower respiratory infections (65.9%), followed by growth and development manifestations (43.2%). Phagocytic defects were the most common cause of IEIs (31.9%), followed by combined immunodeficiency (21.1%). Overall, 109 of 132 patients (82.6%) who underwent genetic testing received a genetic diagnosis, while testing was inconclusive for the remaining 23 patients (17.4%). Among patients with established diagnoses, 37 genes and 44 variants were identified. Autosomal recessive inheritance was present in 81.7% of patients with gene defects. Several variants were novel. Intravenous immunoglobulin therapy was administered to 39.4% of patients and 21.6% received hematopoietic stem cell transplantation. The overall survival rate was 75.1%. CONCLUSION This study highlights the genetic causes of IEIs in Omani patients. This information may help in the early identification and management of the disease, thereby improving survival and quality of life.
Collapse
Affiliation(s)
- Salem Al-Tamemi
- Clinical Immunology & Allergy Unit, Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Shoaib Al-Zadjali
- Molecular Hematology Unit, Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Zandre Bruwer
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Shafiq-Ur-Rehman Naseem
- Clinical Immunology & Allergy Unit, Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Nabila Al-Siyabi
- Clinical Immunology & Allergy Unit, Directorate of Nursing, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mohammed ALRawahi
- Molecular Hematology Unit, Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalsa Alkharusi
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid Al-Thihli
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Fathiya Al-Murshedi
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Abeer AlSayegh
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Almundher Al-Maawali
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - David Dennison
- Molecular Hematology Unit, Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
3
|
Pecoraro A, Crescenzi L, Galdiero MR, Marone G, Rivellese F, Rossi FW, de Paulis A, Genovese A, Spadaro G. Immunosuppressive therapy with rituximab in common variable immunodeficiency. Clin Mol Allergy 2019; 17:9. [PMID: 31080365 PMCID: PMC6501382 DOI: 10.1186/s12948-019-0113-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary antibody deficiency in adulthood and is characterized by the marked reduction of IgG and IgA serum levels. Thanks to the successful use of polyvalent immunoglobulin replacement therapy to treat and prevent recurrent infections, non-infectious complications, including autoimmunity, polyclonal lymphoproliferation and malignancies, have progressively become the major cause of morbidity and mortality in CVID patients. The management of these complications is particularly challenging, often requiring multiple lines of immunosuppressive treatments. Over the last 5–10 years, the anti-CD20 monoclonal antibody (i.e., rituximab) has been increasingly used for the treatment of both autoimmune and non-malignant lymphoproliferative manifestations associated with CVID. This review illustrates the evidence on the use of rituximab in CVID. For this purpose, first we discuss the mechanisms proposed for the rituximab mediated B-cell depletion; then, we analyze the literature data regarding the CVID-related complications for which rituximab has been used, focusing on autoimmune cytopenias, granulomatous lymphocytic interstitial lung disease (GLILD) and non-malignant lymphoproliferative syndromes. The cumulative data suggest that in the vast majority of the studies, rituximab has proven to be an effective and relatively safe therapeutic option. However, there are currently no data on the long-term efficacy and side effects of rituximab and other second-line therapeutic options. Further randomized controlled trials are needed to optimize the management strategies of non-infectious complications of CVID.
Collapse
Affiliation(s)
- Antonio Pecoraro
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Ludovica Crescenzi
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Rosaria Galdiero
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Giancarlo Marone
- 2Department of Public Health, University of Naples Federico II, Naples, Italy.,3Monaldi Hospital Pharmacy, Naples, Italy
| | - Felice Rivellese
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.,4Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francesca Wanda Rossi
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Amato de Paulis
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Arturo Genovese
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppe Spadaro
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|