1
|
Antúnez-Rodríguez A, García-Rodríguez S, Pozo-Agundo A, Sánchez-Ramos JG, Moreno-Escobar E, Triviño-Juárez JM, Martínez-González LJ, Dávila-Fajardo CL. Targeted next-generation sequencing panel to investigate antiplatelet adverse reactions in acute coronary syndrome patients undergoing percutaneous coronary intervention with stenting. Thromb Res 2024; 240:109060. [PMID: 38875847 DOI: 10.1016/j.thromres.2024.109060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Antiplatelet therapy, the gold standard of care for patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI), is one of the therapeutic approaches most associated with the development of adverse drug reactions (ADRs). Although numerous studies have shown that pharmacological intervention based on a limited number of high-evidence variants (primarily CYP2C19*2 and *3) can reduce the incidence of major adverse cardiovascular events (MACEs), ADRs still occur at variable rates (10.1 % in our case) despite personalized therapy. This study aimed to identify novel genetic variants associated with the endpoint of MACEs 12 months after PCI by designing and analyzing a targeted gene panel. We sequenced 244 ACS-PCI-stent patients (109 with event and 135 without event) and 99 controls without structural cardiovascular disease and performed an association analysis to search for unexpected genetic variants. No single nucleotide polymorphisms reached genomic significance after correction, but three novel variants, including ABCA1 (rs2472434), KLB (rs17618244), and ZNF335 (rs3827066), may play a role in MACEs in ACS patients. These genetic variants are involved in regulating high-density lipoprotein levels and cholesterol deposition, and as they are regulatory variants, they may affect the expression of nearby lipid metabolism-related genes. Our findings suggest new targets (both at the gene and pathway levels) that may increase susceptibility to MACEs, but further research is needed to clarify the role and impact of the identified variants before these findings can be incorporated into the therapeutic decision-making process.
Collapse
Affiliation(s)
- Alba Antúnez-Rodríguez
- GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Junta de Andalucía - Instituto de investigación biosanitaria (ibs.Granada), Avenida de la Ilustración 114, 18016 Granada, Spain.
| | - Sonia García-Rodríguez
- GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Junta de Andalucía - Instituto de investigación biosanitaria (ibs.Granada), Avenida de la Ilustración 114, 18016 Granada, Spain.
| | - Ana Pozo-Agundo
- GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Junta de Andalucía - Instituto de investigación biosanitaria (ibs.Granada), Avenida de la Ilustración 114, 18016 Granada, Spain.
| | - Jesús Gabriel Sánchez-Ramos
- Cardiology Department, Hospital Universitario Clínico San Cecilio - Instituto de investigación biosanitaria (ibs.Granada), Avenida de la Innovación s/n, 18016 Granada, Spain
| | - Eduardo Moreno-Escobar
- Cardiology Department, Hospital Universitario Clínico San Cecilio - Instituto de investigación biosanitaria (ibs.Granada), Avenida de la Innovación s/n, 18016 Granada, Spain
| | - José Matías Triviño-Juárez
- Department of Radiology and Physical Medicine, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18071 Granada, Spain.
| | - Luis Javier Martínez-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Junta de Andalucía - Instituto de investigación biosanitaria (ibs.Granada), Avenida de la Ilustración 114, 18016 Granada, Spain; Department of Biochemistry and Molecular Biology III and Inmunology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18071 Granada, Spain.
| | - Cristina Lucía Dávila-Fajardo
- GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Junta de Andalucía - Instituto de investigación biosanitaria (ibs.Granada), Avenida de la Ilustración 114, 18016 Granada, Spain; Pharmacy Department, Hospital Universitario Virgen de las Nieves - Instituto de investigación biosanitaria (ibs.Granada), Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain.
| |
Collapse
|
2
|
Sutaria A, Rawlani S, Sutaria AH. Causes and Management of Cutaneous Adverse Drug Reactions: A Comprehensive Review. Cureus 2024; 16:e55318. [PMID: 38562325 PMCID: PMC10982164 DOI: 10.7759/cureus.55318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Cutaneous adverse drug reactions (CADRs) are one of the most broadly studied and rigorously researched conditions in recent dermatological advancements. Also termed as "toxidermia," they are heavily involved and are of utmost importance to be understood and studied in the modern healthcare industry. In simple terms, they are dermatological manifestations which result from systemic drug administration to patients. Since allopathy is influenced by the medicines and drugs provided to the patients, cutaneous skin eruptions are a common occurrence in recent times. It is a need of the hour to understand the causative factors for such skin eruptions and the correct management and handling of such disorders to provide better healthcare to patients. The withdrawal of the causative drug which induces the reaction plays a key role in treatment. The risk factors are to be thoroughly studied, and dosages must be in accordance with the patient's situation. They are some of the common public health problems. The age group which is affected is highly variable as people from all age groups can be affected. Those who are affected comprise approximately 10% of all hospitalized patients, and it is also observed in about 1-4% of people who are on multiple medications.
Collapse
Affiliation(s)
- Arsh Sutaria
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - Shobha Rawlani
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - Amita H Sutaria
- Dermatology, Byramjee Jeejeebhoy (BJ) Medical College and Civil Hospital, Ahmedabad, IND
| |
Collapse
|
3
|
Abstract
Major advances in scientific discovery and insights that stem from the development and use of new techniques and models can bring remarkable progress to conventional toxicology. Although animal testing is still considered as the "gold standard" in traditional toxicity testing, there is a necessity for shift from animal testing to alternative methods regarding the drug safety testing owing to the emerging state-of-art techniques and the proposal of 3Rs (replace, reduce, and refine) towards animal welfare. This review describes some recent research methods in drug discovery toxicology, including in vitro cell and organ-on-a-chip, imaging systems, model organisms (C. elegans, Danio rerio, and Drosophila melanogaster), and toxicogenomics in modern toxicology testing.
Collapse
Affiliation(s)
- Bowen Tang
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| | - Vijay More
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Datasets of well characterized drug or herbal and dietary supplement-associated liver injury has provided a rich resource to identify genetic variants associated with hepatic injury that further supports the role of immune activation in drug-induced liver injury (DILI). RECENT FINDINGS Using DNA microarrays, whole genome sequencing, HLA-restricted DNA sequencing with appropriate ethnically matched population controls have identified HLA-specific genetic variants for drugs or botanical compounds with the same HLA variant associated with different agents. In addition to HLAs, two genes involved with immune signaling were also identified: a functional PTPN22 variant associated with increased DILI risk to any agent or clinical presentation and a variant in ERAP2 hepatic gene expression that trims peptide in preparation for presentation in the HLA cleft increased the risk for DILI in amoxicillin-clavulanate DILI when present with known HLA risk alleles. SUMMARY Variants in HLA and other genes involved in immune regulations further supports immune system activation in DILI. In the future, identifying these variants before exposure may minimize the risk for DILI events, help with assessment of drug causality for causing DILI and with greater understanding of DILI mechanisms, has important implication for future drug development.
Collapse
Affiliation(s)
- Andrew Stolz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Wong ML, Arcos-Burgos M, Liu S, Licinio AW, Yu C, Chin EWM, Yao WD, Lu XY, Bornstein SR, Licinio J. Rare Functional Variants Associated with Antidepressant Remission in Mexican-Americans: Short title: Antidepressant remission and pharmacogenetics in Mexican-Americans. J Affect Disord 2021; 279:491-500. [PMID: 33128939 PMCID: PMC7953425 DOI: 10.1016/j.jad.2020.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/24/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Rare genetic functional variants can contribute to 30-40% of functional variability in genes relevant to drug action. Therefore, we investigated the role of rare functional variants in antidepressant response. METHOD Mexican-American individuals meeting the Diagnostic and Statistical Manual-IV criteria for major depressive disorder (MDD) participated in a prospective randomized, double-blind study with desipramine or fluoxetine. The rare variant analysis was performed using whole-exome genotyping data. Network and pathway analyses were carried out with the list of significant genes. RESULTS The Kernel-Based Adaptive Cluster method identified functional rare variants in 35 genes significantly associated with treatment remission (False discovery rate, FDR <0.01). Pathway analysis of these genes supports the involvement of the following gene ontology processes: olfactory/sensory transduction, regulation of response to cytokine stimulus, and meiotic cell cycleprocess. LIMITATIONS Our study did not have a placebo arm. We were not able to use antidepressant blood level as a covariate. Our study is based on a small sample size of only 65 Mexican-American individuals. Further studies using larger cohorts are warranted. CONCLUSION Our data identified several rare functional variants in antidepressant drug response in MDD patients. These have the potential to serve as genetic markers for predicting drug response. TRIAL REGISTRATION ClinicalTrials.gov NCT00265291.
Collapse
Affiliation(s)
- Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA; Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia.
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Sha Liu
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia
| | - Alice W Licinio
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia
| | - Chenglong Yu
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Eunice W M Chin
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Stefan R Bornstein
- Medical Clinic III, Carl Gustav Carus University Hospital, Dresden University of Technology, Dresden, Germany
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA; Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia.
| |
Collapse
|
6
|
Arranz MJ, Salazar J, Hernández MH. Pharmacogenetics of antipsychotics: Clinical utility and implementation. Behav Brain Res 2020; 401:113058. [PMID: 33316324 DOI: 10.1016/j.bbr.2020.113058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Decades of research have produced extensive evidence of the contribution of genetic factors to the efficacy and toxicity of antipsychotics. Numerous genetic variants in genes controlling drug availability or involved in antipsychotic processes have been linked to treatment variability. The complex mechanism of action and multitarget profile of most antipsychotic drugs hinder the identification of pharmacogenetic markers of clinical value. Nevertheless, the validity of associations between variants in CYP1A2, CYP2D6, CYP2C19, ABCB1, DRD2, DRD3, HTR2A, HTR2C, BDNF, COMT, MC4R genes and antipsychotic response has been confirmed in independent candidate gene studies. Genome wide pharmacogenomic studies have proven the role of the glutamatergic pathway in mediating antipsychotic activity and have reported novel associations with antipsychotic response. However, only a limited number of the findings, mainly functional variants of CYP metabolic enzymes, have been shown to be of clinical utility and translated into useful pharmacogenetic markers. Based on the currently available information, actionable pharmacogenetics should be reduced to antipsychotics' dose adjustment according to the genetically predicted metabolic status (CYPs' profile) of the patient. Growing evidence suggests that such interventions will reduce antipsychotics' side-effects and increase treatment safety. Despite this evidence, the use of pharmacogenetics in psychiatric wards is minimal. Hopefully, further evidence on the clinical and economic benefits, the development of clinical protocols based on pharmacogenetic information, and improved and cheaper genetic testing will increase the implementation of pharmacogenetic guided prescription in clinical settings.
Collapse
Affiliation(s)
- Maria J Arranz
- Fundació Docència i Recerca Mútua Terrassa, Spain; Centro de investigación en Red de Salud Mental, CIBERSAM, Madrid, Spain; PHAGEX Research Group, Universitat Ramon LLull, Spain.
| | - Juliana Salazar
- Translational Medical Oncology Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain; U705, ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain; PHAGEX Research Group, Universitat Ramon LLull, Spain
| | - Marta H Hernández
- PHAGEX Research Group, Universitat Ramon LLull, Spain; School of Health Sciences Blanquerna. University Ramon Llull, Barcelona, Spain
| |
Collapse
|
7
|
Di Paolo A, Arrigoni E, Luci G, Cucchiara F, Danesi R, Galimberti S. Precision Medicine in Lymphoma by Innovative Instrumental Platforms. Front Oncol 2019; 9:1417. [PMID: 31921674 PMCID: PMC6928138 DOI: 10.3389/fonc.2019.01417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, many efforts have been addressed to the growing field of precision medicine in order to offer individual treatments to every patient on the basis of his/her genetic background. Formerly adopted to achieve new disease classifications as it is still done, innovative platforms, such as microarrays, genome-wide association studies (GWAS), and next generation sequencing (NGS), have made the progress in pharmacogenetics faster and cheaper than previously expected. Several studies in lymphoma patients have demonstrated that these platforms can be used to identify biomarkers predictive of drug efficacy and tolerability, discovering new possible druggable proteins. Indeed, GWAS and NGS allow the investigation of the human genome, finding interesting associations with putative or unexpected targets, which in turns may represent new therapeutic possibilities. Importantly, some objective difficulties have initially hampered the translation of findings in clinical routines, such as the poor quantity/quality of genetic material or the paucity of targets that could be investigated at the same time. At present, some of these technical issues have been partially solved. Furthermore, these analyses are growing in parallel with the development of bioinformatics and its capabilities to manage and analyze big data. Because of pharmacogenetic markers may become important during drug development, regulatory authorities (i.e., EMA, FDA) are preparing ad hoc guidelines and recommendations to include the evaluation of genetic markers in clinical trials. Concerns and difficulties for the adoption of genetic testing in routine are still present, as well as affordability, reliability and the poor confidence of some patients for these tests. However, genetic testing based on predictive markers may offers many advantages to caregivers and patients and their introduction in clinical routine is justified.
Collapse
Affiliation(s)
- Antonello Di Paolo
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Unit of Clinical Pharmacology and Pharmacogenetics, Pisa University Hospital, Pisa, Italy
| | - Elena Arrigoni
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giacomo Luci
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Cucchiara
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Unit of Clinical Pharmacology and Pharmacogenetics, Pisa University Hospital, Pisa, Italy
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Unit of Hematology, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
8
|
Towards precision medicine: interrogating the human genome to identify drug pathways associated with potentially functional, population-differentiated polymorphisms. THE PHARMACOGENOMICS JOURNAL 2019; 19:516-527. [PMID: 31578463 PMCID: PMC6867962 DOI: 10.1038/s41397-019-0096-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022]
Abstract
Drug response variations amongst different individuals/populations are influenced by several factors including allele frequency differences of single nucleotide polymorphisms (SNPs) that functionally affect drug-response genes. Here, we aim to identify drugs that potentially exhibit population differences in response using SNP data mining and analytics. Ninety-one pairwise-comparisons of >22,000,000 SNPs from the 1000 Genomes Project, across 14 different populations, were performed to identify ‘population-differentiated’ SNPs (pdSNPs). Potentially-functional pdSNPs (pf-pdSNPs) were then selected, mapped into genes, and integrated with drug–gene databases to identify ‘population-differentiated’ drugs enriched with genes carrying pf-pdSNPs. 1191 clinically-approved drugs were found to be significantly enriched (Z > 2.58) with genes carrying SNPs that were differentiated in one or more population-pair comparisons. Thirteen drugs were found to be enriched with such differentiated genes across all 91 population-pairs. Notably, 82% of drugs, which were previously reported in the literature to exhibit population differences in response were also found by this method to contain a significant enrichment of population specific differentiated SNPs. Furthermore, drugs with genetic testing labels, or those suspected to cause adverse reactions, contained a significantly larger number (P < 0.01) of population-pairs with enriched pf-pdSNPs compared with those without these labels. This pioneering effort at harnessing big-data pharmacogenomics to identify ‘population differentiated’ drugs could help to facilitate data-driven decision-making for a more personalized medicine.
Collapse
|
9
|
Arbitrio M, Di Martino MT, Scionti F, Barbieri V, Pensabene L, Tagliaferri P. Pharmacogenomic Profiling of ADME Gene Variants: Current Challenges and Validation Perspectives. High Throughput 2018; 7:E40. [PMID: 30567415 PMCID: PMC6306724 DOI: 10.3390/ht7040040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023] Open
Abstract
In the past decades, many efforts have been made to individualize medical treatments, taking into account molecular profiles and the individual genetic background. The development of molecularly targeted drugs and immunotherapy have revolutionized medical treatments but the inter-patient variability in the anti-tumor drug pharmacokinetics (PK) and pharmacodynamics can be explained, at least in part, by genetic variations in genes encoding drug metabolizing enzymes and transporters (ADME) or in genes encoding drug receptors. Here, we focus on high-throughput technologies applied for PK screening for the identification of predictive biomarkers of efficacy or toxicity in cancer treatment, whose application in clinical practice could promote personalized treatments tailored on individual's genetic make-up. Pharmacogenomic tools have been implemented and the clinical utility of pharmacogenetic screening could increase safety in patients for the identification of drug metabolism-related biomarkers for a personalized medicine. Although pharmacogenomic studies were performed in adult cohorts, pharmacogenetic pediatric research has yielded promising results. Additionally, we discuss the current challenges and theoretical bases for the implementation of pharmacogenetic tests for translation in the clinical practice taking into account that pharmacogenomics platforms are discovery oriented and must open the way for the setting of robust tests suitable for daily practice.
Collapse
Affiliation(s)
- Mariamena Arbitrio
- Institute of Neurological Sciences, UOS of Pharmacology, 88100 Catanzaro, Italy.
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Vito Barbieri
- Medical Oncology Unit, Mater Domini Hospital, Salvatore Venuta University Campus, 8810 Catanzaro, Italy.
| | - Licia Pensabene
- Department of Medical and Surgical Sciences Pediatric Unit, Magna Graecia University, 88100 Catanzaro, Italy.
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| |
Collapse
|
10
|
Hu GX, Dai DP, Wang H, Huang XX, Zhou XY, Cai J, Chen H, Cai JP. Systematic screening for CYP3A4 genetic polymorphisms in a Han Chinese population. Pharmacogenomics 2017; 18:369-379. [PMID: 28244811 DOI: 10.2217/pgs-2016-0179] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To systematically investigate the genetic polymorphisms of the CYP3A4 gene in a Han Chinese population. Materials & methods: The promoter and exons of CYP3A4 gene in 1114 unrelated, healthy Han Chinese subjects were amplified and genotyped by direct sequencing. Results: In total, five previously reported alleles (*1G, *4, *5, *18B and *23) were detected, of which one allele (*23) was reported for the first time in Han Chinese population. Additionally, seven novel exonic variants were also identified and designated as new alleles CYP3A4*28–*34. Conclusion: This study provides the most comprehensive data of CYP3A4 polymorphisms in Han Chinese population and detects the largest number of novel CYP3A4 alleles in one ethnic group.
Collapse
Affiliation(s)
- Guo-Xin Hu
- Department of Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Da-Peng Dai
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Hao Wang
- Department of Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiang-Xin Huang
- Department of Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiao-Yang Zhou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Jie Cai
- Department of Pharmacy, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang 317500, P.R. China
| | - Hao Chen
- Department of Cardiology, Beijing Hospital, Beijing 100730, P.R. China
| | - Jian-Ping Cai
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| |
Collapse
|
11
|
Khan DA. Pharmacogenomics and adverse drug reactions: Primetime and not ready for primetime tests. J Allergy Clin Immunol 2016; 138:943-955. [DOI: 10.1016/j.jaci.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 10/20/2022]
|
12
|
Dos Santos-Júnior A, Henriques TB, de Mello MP, Della Torre OH, Paes LA, Ferreira-Neto AP, Sewaybricker LE, Fontana TS, Celeri EHRV, Guerra-Júnior G, Dalgalarrondo P. Pharmacogenetics of Risperidone and Cardiovascular Risk in Children and Adolescents. Int J Endocrinol 2016; 2016:5872423. [PMID: 26880915 PMCID: PMC4736591 DOI: 10.1155/2016/5872423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/11/2015] [Accepted: 12/20/2015] [Indexed: 01/19/2023] Open
Abstract
Objective. To identify the frequency of obesity and metabolic complications in child and adolescent users of risperidone. Potential associations with clinical parameters and SNPs of the HTR2C, DRD2, LEP, LEPR, MC4R, and CYP2D6 genes were analyzed. Methods. Samples from 120 risperidone users (8-20 years old) were collected and SNPs were analyzed, alongside assessment of chronological and bone ages, prescribed and weight-adjusted doses, use of other psychotropic drugs, waist circumference, BMI z-scores, blood pressure, HOMA-IR index, fasting levels of serum glucose, insulin, cholesterol, triglycerides, transaminases, and leptin. Results. Thirty-two (26.7%) patients were overweight and 5 (4.2%) obese. Hypertension was recorded in 8 patients (6.7%), metabolic syndrome in 6 (5%), and increased waist circumference in 20 (16.7%). The HOMA-IR was high for 22 patients (18.3%), while total cholesterol and triglycerides were high in 20 (16.7%) and 41 (34.2%) patients, respectively. SNP associations were found for LEP, HTR2C, and CYP2D6 with BMI; CYP2D6 with blood pressure, ALT, and HOMA-IR; HTR2C and LEPR with leptin levels; MC4R and DRD2 with HOMA-IR; HTR2C with WC; and LEP with ALT. Conclusions. Although not higher than in the general pediatric population, a high frequency of patients was overweight/obese, with abnormalities in metabolic parameters and some pharmacogenetic associations.
Collapse
Affiliation(s)
- Amilton Dos Santos-Júnior
- Department of Psychiatry, School of Medical Sciences (FCM), State University of Campinas (Unicamp), 13083-887 Campinas, SP, Brazil
| | - Taciane Barbosa Henriques
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), Unicamp, 13083-875 Campinas, SP, Brazil
| | - Maricilda Palandi de Mello
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), Unicamp, 13083-875 Campinas, SP, Brazil
| | - Osmar Henrique Della Torre
- Department of Psychiatry, School of Medical Sciences (FCM), State University of Campinas (Unicamp), 13083-887 Campinas, SP, Brazil
| | - Lúcia Arisaka Paes
- Department of Psychiatry, School of Medical Sciences (FCM), State University of Campinas (Unicamp), 13083-887 Campinas, SP, Brazil
| | - Adriana Perez Ferreira-Neto
- Department of Psychiatry, School of Medical Sciences (FCM), State University of Campinas (Unicamp), 13083-887 Campinas, SP, Brazil
| | - Letícia Esposito Sewaybricker
- Growth and Development Laboratory, Center for Investigation in Pediatrics (CIPED), FCM-Unicamp, 13083-887 Campinas, SP, Brazil
| | - Thiago Salum Fontana
- Department of Psychiatry, School of Medical Sciences (FCM), State University of Campinas (Unicamp), 13083-887 Campinas, SP, Brazil
| | | | - Gil Guerra-Júnior
- Growth and Development Laboratory, Center for Investigation in Pediatrics (CIPED), FCM-Unicamp, 13083-887 Campinas, SP, Brazil
- Department of Pediatrics, Pediatric Endocrinology Unit, FCM-Unicamp, 13083-887 Campinas, SP, Brazil
| | - Paulo Dalgalarrondo
- Department of Psychiatry, School of Medical Sciences (FCM), State University of Campinas (Unicamp), 13083-887 Campinas, SP, Brazil
| |
Collapse
|