1
|
Afolabi BL, Mazhindu T, Zedias C, Borok M, Ndlovu N, Masimirembwa C. Pharmacogenetics and Adverse Events in the Use of Fluoropyrimidine in a Cohort of Cancer Patients on Standard of Care Treatment in Zimbabwe. J Pers Med 2023; 13:588. [PMID: 37108974 PMCID: PMC10141018 DOI: 10.3390/jpm13040588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Fluoropyrimidines are commonly used in the treatment of colorectal cancer. They are, however, associated with adverse events (AEs), of which gastrointestinal, myelosuppression and palmar-plantar erythrodysesthesia are the most common. Clinical guidelines are used for fluoropyrimidine dosing based on dihydropyrimidine dehydrogenase (DPYD) genetic polymorphism and have been shown to reduce these AEs in patients of European ancestry. This study aimed to evaluate, for the first time, the clinical applicability of these guidelines in a cohort of cancer patients on fluoropyrimidine standard of care treatment in Zimbabwe. DNA was extracted from whole blood and used for DPYD genotyping. Adverse events were monitored for six months using the Common Terminology Criteria for AEs (CTCAE) v.5.0. None of the 150 genotyped patients was a carrier of any of the pathogenic variants (DPYD*2A, DPYD*13, rs67376798, or rs75017182). However, severe AEs were high (36%) compared to those reported in the literature from other populations. There was a statistically significant association between BSA (p = 0.0074) and BMI (p = 0.0001) with severe global AEs. This study has shown the absence of the currently known actionable DPYD variants in the Zimbabwean cancer patient cohort. Therefore, the current pathogenic variants in the guidelines might not be feasible for all populations hence the call for modification of the current DPYD guidelines to include minority populations for the benefit of all diverse patients.
Collapse
Affiliation(s)
- Boluwatife Lawrence Afolabi
- African Institute of Biomedical Science and Technology, Harare P.O. Box 2294, Zimbabwe; (B.L.A.)
- Department of Biotechnology, School of Health Sciences, Chinhoyi University of Technology, Chinhoyi Private Bag 7724, Zimbabwe
| | - Tinashe Mazhindu
- African Institute of Biomedical Science and Technology, Harare P.O. Box 2294, Zimbabwe; (B.L.A.)
- Department of Oncology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare P.O. Box 2294, Zimbabwe
| | - Chikwambi Zedias
- African Institute of Biomedical Science and Technology, Harare P.O. Box 2294, Zimbabwe; (B.L.A.)
- Department of Biotechnology, School of Health Sciences, Chinhoyi University of Technology, Chinhoyi Private Bag 7724, Zimbabwe
| | - Margaret Borok
- Department of Oncology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare P.O. Box 2294, Zimbabwe
| | - Ntokozo Ndlovu
- Department of Oncology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare P.O. Box 2294, Zimbabwe
| | - Collen Masimirembwa
- African Institute of Biomedical Science and Technology, Harare P.O. Box 2294, Zimbabwe; (B.L.A.)
| | | |
Collapse
|
2
|
Paclitaxel exposure-toxicity analysis reveals a pharmacokinetic determinant for dose-limiting neutropenia in East-Asian solid tumor patients: results from two prospective, phase II studies. Cancer Chemother Pharmacol 2022; 90:229-237. [PMID: 35922567 DOI: 10.1007/s00280-022-04456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE The time of a paclitaxel (PTX) concentration remains above 0.05 μM (Tc > 0.05) has been associated with PTX-induced adverse effects in Caucasians, while limited studies were reported in Asians. This study was aimed to explore the characteristics of Tc > 0.05 and the relationship between PTX exposure and toxicity in East-Asian patients. METHODS This study was based on two prospective phase II clinical trials and patients with advanced nasopharyngeal cancer (NPC) and non-small cell lung cancer (NSCLC) who were naïve to PTX were included independently. Eligible patients receive PTX (175 mg/m2) and carboplatin (AUC = 5) treatment every 3 weeks. PTX pharmacokinetic analysis was accessed. The relationship between PTX exposure and toxicities after first cycle as well as clinical efficacy was evaluated. RESULTS A total of 93 NPC and 40 NSCLC patients were enrolled. PTX exposure was consistent in two trials with average Tc > 0.05 duration of 38.8 h and 38.4 h, respectively. Average Tc > 0.05 in patients with grade 3/4 neutropenia was significantly higher than those without severe neutropenia in NPC patients (P = 0.003) and NSCLC patients (P = 0.007). Cut-off value of Tc > 0.05 were identified from the NPC cohort and then verified in the NSCLC cohort, dividing patients into high exposure Tc > 0.05 group (> 39 h) and low exposure group (≤ 39 h). Incidence of grade 3/4 neutropenia were significantly higher in the high exposure group in NPC cohort (43.3% vs 10.0%, P < 0.001) and NSCLC cohort (42.1% vs 9.5%, P = 0.028). No significant relationship between Tc > 0.05 and efficacy were observed. CONCLUSION Patients with PTX Tc > 0.05 duration above 39 h experience more severe neutropenia than those under 39 h. Prospective studies are needed to verify this threshold.
Collapse
|
3
|
Tong Z, Cheng M, Yu Y, Yu J, Yin Y, Liu J, Zhang S, Jiang S, Dong M. Correlation between pharmacokinetic parameters of 5-fluorouracil and related metabolites and adverse reactions in East-Asian patients with advanced colorectal cancer. Cancer Chemother Pharmacol 2022; 89:323-330. [DOI: 10.1007/s00280-021-04387-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022]
|
4
|
Liu Y, Wang G, Li Y, Zhao Q, Fan L, Tan B, Li B, Yu B, Xi J. miR-424-5p reduces 5-fluorouracil resistance possibly by inhibiting Src/focal adhesion kinase signalling-mediated epithelial-mesenchymal transition in colon cancer cells. J Pharm Pharmacol 2021; 73:1062-1070. [PMID: 33793771 DOI: 10.1093/jpp/rgab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES miR-424-5p negatively regulates various malignant biological behaviours in tumour cells. We explored the relationship between miR-424-5p and 5-fluorouracil resistance in colon cancer cells. METHODS We developed 5-fluorouracil-resistant HT-29 cells and detected miR-424-5p expression using real-time fluorescence quantitative PCR. Cell viability was assessed using Cell Counting Kit-8 (CCK-8) assay. Immunofluorescence and western blotting were performed to determine protein levels. Apoptosis was detected by Annexin V-FITC/PI staining. KEY FINDINGS miR-424-5p was downregulated in 5-fluorouracil-resistant HT-29 cells. A miR-424-5p mimic enhanced the sensitivity of the resistant cells to 5-fluorouracil, whereas a miR-424-5p inhibitor promoted 5-fluorouracil resistance in HT-29 cells. Furthermore, the miR-424-5p mimic downregulated vimentin and upregulated E-cadherin in 5-fluorouracil-resistant HT-29 cells, whereas the miR-424-5p inhibitor exhibited opposite effects. The miR-424-5p inhibitor significantly inhibited 5-fluorouracil-induced HT-29 cell apoptosis and Src and focal adhesion kinase phosphorylation, whereas the miR-424-5p mimic showed opposite effects. Pretreatment with Src inhibitor 1 or focal adhesion kinase inhibitor 2 blocked the increase in Src and focal adhesion kinase phosphorylation and vimentin expression level and the decrease in E-cadherin expression level in miR-424-5p inhibitor-exposed HT-29 cells. CONCLUSIONS miR-424-5p suppressed epithelial-mesenchymal transition by inhibiting the Src/focal adhesion kinase signalling pathway to reduce 5-fluorouracil resistance in colon cancer cells.
Collapse
Affiliation(s)
- Youqiang Liu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qun Zhao
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liqiao Fan
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bibo Tan
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baokun Li
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Yu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinchuan Xi
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
|
6
|
Song L, Liu H, Liu Q. Matrix metalloproteinase 1 promotes tumorigenesis and inhibits the sensitivity to 5-fluorouracil of nasopharyngeal carcinoma. Biomed Pharmacother 2019; 118:109120. [DOI: 10.1016/j.biopha.2019.109120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/30/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
|
7
|
Beumer JH, Chu E, Allegra C, Tanigawara Y, Milano G, Diasio R, Kim TW, Mathijssen RH, Zhang L, Arnold D, Muneoka K, Boku N, Joerger M. Therapeutic Drug Monitoring in Oncology: International Association of Therapeutic Drug Monitoring and Clinical Toxicology Recommendations for 5-Fluorouracil Therapy. Clin Pharmacol Ther 2019; 105:598-613. [PMID: 29923599 PMCID: PMC6309286 DOI: 10.1002/cpt.1124] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
5-Fluorouracil (5-FU) is dosed by body surface area, a practice unable to reduce the interindividual variability in exposure. Endorsed by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT), we evaluated clinical evidence and strongly recommend TDM for the management of 5-FU therapy in patients with colorectal or head-and-neck cancer receiving common 5-FU regimens. Our systematic methodology provides a framework to evaluate published evidence in support of TDM recommendations in oncology.
Collapse
Affiliation(s)
- Jan H. Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edward Chu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Yusuke Tanigawara
- Department of Clinical Pharmacokinetics and Pharmacodynamics, Keio University School of Medicine, Tokyo, Japan
| | - Gerard Milano
- Oncopharmacology Unit, Centre Antoine Lacassagne, Nice, France
| | - Robert Diasio
- Developmental Therapeutics Program, Mayo Clinic Cancer Center, Rochester, MN
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Tae Won Kim
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ron H. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dirk Arnold
- Department of Oncology, AK Altona, Asklepios Tumorzentrum Hamburg, Hamburg, Germany
| | - Katsuki Muneoka
- Division of Oncology Center, Niitsu Medical Center Hospital, Niigata City, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Markus Joerger
- Department of Medical Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland
| |
Collapse
|
8
|
Goirand F, Lemaitre F, Launay M, Tron C, Chatelut E, Boyer JC, Bardou M, Schmitt A. How can we best monitor 5-FU administration to maximize benefit to risk ratio? Expert Opin Drug Metab Toxicol 2018; 14:1303-1313. [PMID: 30451549 DOI: 10.1080/17425255.2018.1550484] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION 5-Fluorouracil (5-FU) is currently used as a chemotherapy in several cancers such as head-and-neck (H&N) and colorectal cancers. 5-FU dosing is traditionally based on body surface area (BSA), but this strategy is usually associated with severe toxicities. 5-FU is mainly catabolized by dihydropyrimidine dehydrogenase (DPD), and 5-FU dosage adaptation according to DPD status at the first cycle of treatment is now recommended. To further optimize 5-FU-based chemotherapy, a body of evidences justifies therapeutic drug monitoring (TDM). Areas covered: 5-FU pharmacokinetics, relationships between pharmacokinetics and efficacy or toxicity of 5-FU, proofs of interest of 5-FU TDM and its practical considerations are discussed. Expert opinion: BSA-adjusted 5-FU administration is associated with a large inter-individual variability, and according to this strategy, many patients experience under- or overexposure. Moreover, relationships between 5-FU area under the curve (AUC) and its toxicity or efficacy have been demonstrated, at least in patients with colorectal or H&N cancers. 5-FU therapeutic index has been validated and algorithms of 5-FU dosage adaptation according to its AUC are now available. Advances in pre-analytical and analytical steps of 5-FU TDM make its use feasible in clinical practice. Thus, there are consistent evidences to recommend 5-FU TDM in patients with advanced colorectal or H&N cancers.
Collapse
Affiliation(s)
- Françoise Goirand
- a Centre Hospitalo-Universitaire de Dijon-Bourgogne , Dijon , France
| | - Florian Lemaitre
- b Service de Pharmacologie Clinique , Laboratoire de Pharmacologie Expérimentale et Clinique, Centre d'Investigation Clinique INSERM 1414, CHU de Rennes, Université Rennes 1 , Rennes , France
| | - Manon Launay
- c Service de Pharmacologie, Hôpital Européen Georges Pompidou , Laboratoire de Pharmacologie et de Toxicologie , Paris , France
| | - Camille Tron
- b Service de Pharmacologie Clinique , Laboratoire de Pharmacologie Expérimentale et Clinique, Centre d'Investigation Clinique INSERM 1414, CHU de Rennes, Université Rennes 1 , Rennes , France
| | - Etienne Chatelut
- d Institut Claudius-Regaud et Centre de Recherches en Cancérologie de Toulouse , IUCT - Oncopole , Toulouse , France
| | - Jean-Christophe Boyer
- e Laboratoire de Biochimie et Biologie Moléculaire , CHU de Nîmes Carémeau , Nîmes , France
| | - Marc Bardou
- f Centre d'Investigations Cliniques 1432, Module Plurithématique , CHU Dijon-Bourgogne, Hôpital François Mitterrand , Dijon , France
| | - Antonin Schmitt
- g Service Pharmacie , Centre Georges-François Leclerc , Dijon , France
| |
Collapse
|
9
|
Lemaitre F, Goirand F, Launay M, Chatelut E, Boyer JC, Evrard A, Paludetto MN, Guilhaumou R, Ciccolini J, Schmitt A. [5-fluorouracil therapeutic drug monitoring: Update and recommendations of the STP-PT group of the SFPT and the GPCO-Unicancer]. Bull Cancer 2018; 105:790-803. [PMID: 30103904 DOI: 10.1016/j.bulcan.2018.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/26/2022]
Abstract
Despite being 60-years old now, 5-FU remains the backbone of numerous regimen to treat a variety of solid tumors such as breast, head-and-neck and digestive cancers either in neo-adjuvant, adjuvant or metastatic settings. Standard 5-FU usually claims 15-40% of severe toxicities and up to 1% of toxic-death. Numerous studies show a stiff relationship between 5-FU exposure and toxicity or efficacy. In addition, 5-FU pharmacokinetics is highly variable between patients. Indeed, 80% of the 5-FU dose is catabolized in the liver by dihydropyrimidine dehydrogenase (DPD) into inactive compounds. It is now well established that DPD deficiency could lead to severe toxicities and, thus, require dose reduction in deficient patients. However, despite dosage adaptation based on DPD status, some patients may still experience under- or over-exposure, leading to inefficacy or major toxicity. The "Suivi thérapeutique pharmacologique et personnalisation des traitements" (STP-PT) group of the "Société française de pharmacologie et de thérapeutique" (SFPT) and the "Groupe de pharmacologie clinique oncologique" (GPCO)-Unicancer, based on the latest and most up-to-date literature data, recommend the implementation of 5-FU Therapeutic Drug Monitoring in order to ensure an adequate 5-FU exposure.
Collapse
Affiliation(s)
- Florian Lemaitre
- Université Rennes 1, CHU de Rennes, centre d'investigation clinique Inserm 1414, service de pharmacologie clinique, laboratoire de pharmacologie expérimentale et clinique, 2, rue Henri-Le-Guilloux, 35000 Rennes, France
| | - Françoise Goirand
- Centre hospitalo-universitaire de Dijon-Bourgogne, 5, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Manon Launay
- Hôpital européen Georges-Pompidou, laboratoire de pharmacologie et de toxicologie, service de pharmacologie, 20, rue Leblanc, 75908 Paris cedex 15, France
| | - Etienne Chatelut
- Institut Claudius-Regaud et centre de recherches en cancérologie de Toulouse, IUCT - Oncopole, 1, avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Jean-Christophe Boyer
- CHU de Nîmes Carémeau, laboratoire de biochimie et biologie moléculaire, place du Professeur-Robert-Debré, 30029 Nîmes cedex 9, France
| | - Alexandre Evrard
- CHU de Nîmes Carémeau, laboratoire de biochimie et biologie moléculaire, place du Professeur-Robert-Debré, 30029 Nîmes cedex 9, France
| | - Marie-Noelle Paludetto
- Institut Claudius-Regaud et centre de recherches en cancérologie de Toulouse, IUCT - Oncopole, 1, avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Romain Guilhaumou
- AP-HM, CHU Timone, service de pharmacologie clinique et pharmacovigilance, 264, rue Saint-Pierre, 13005 Marseille, France
| | - Joseph Ciccolini
- AP-HM, CHU Timone, SMARTc CRCM UMR Inserm U1068, laboratoire de pharmacocinétique clinique, 265, rue St-Pierre, 13385 Marseille, France
| | - Antonin Schmitt
- Centre Georges-François-Leclerc, service pharmacie, 1, rue Pr.-Marion, 21000 Dijon, France.
| |
Collapse
|