1
|
Gagno S, Posocco B, Orleni M, Cecchin E, Fumagalli A, Guardascione M, Buonadonna A, Polesel J, Puglisi F, Toffoli G, Cecchin E. Increased plasma imatinib exposure and toxicity in chronically treated GIST patients with SARS-CoV-2 infection: a case series. Front Immunol 2024; 15:1441620. [PMID: 39445010 PMCID: PMC11497461 DOI: 10.3389/fimmu.2024.1441620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Inflammatory factors released during severe coronavirus disease-19 (COVID-19) caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are known to influence drug exposure, but data on the effect of mild infection are few. Here we describe for the first time an increase in plasma imatinib and norimatinib concentrations observed in a series of 5 patients treated with imatinib for gastrointestinal stromal tumor (GIST) after mild COVID-19. Methods The patients were undergoing routine therapeutic drug monitoring (TDM) and pharmacogenetic (PGx) analyses of polymorphisms in genes involved in imatinib metabolism and transport (CYP3A4, CYP3A5, ABCB1, and ABCG2) when SARS-CoV-2 infection occurred. Imatinib and its active metabolite norimatinib concentrations were determined at Ctrough using a validated LC-MS/MS method. PGx analyses were performed by KASP genotyping assays on a Real-Time PCR system. All patients received imatinib 400 mg/day. Case 1 was prospectively monitored. Cases 2-5 were identified retrospectively. Results On average, imatinib Ctrough increased significantly by 70% during COVID-19, whereas norimatinib showed a 44% increase compared with pre-COVID-19 levels. Elevated plasma imatinib concentrations persisted up to 6 months after infection remission. In 3 cases, this increase reflected the occurrence or worsening of imatinib side effects. Conclusion This case-series highlights the clinical impact of SARS-CoV-2 infection on the management of patients with GIST treated with imatinib.
Collapse
Affiliation(s)
- Sara Gagno
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Bianca Posocco
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Marco Orleni
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Eleonora Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Arianna Fumagalli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Michela Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Angela Buonadonna
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, Udine, UD, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
2
|
Adiwidjaja J, Adattini JA, Boddy AV, McLachlan AJ. Physiologically-Based Pharmacokinetic Modeling Approaches for Patients with SARS-CoV-2 Infection: A Case Study with Imatinib. J Clin Pharmacol 2022; 62:1285-1296. [PMID: 35460539 PMCID: PMC9088354 DOI: 10.1002/jcph.2065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection, which causes coronavirus disease 2019 (COVID‐19), manifests as mild respiratory symptoms to severe respiratory failure and is associated with inflammation and other physiological changes. Of note, substantial increases in plasma concentrations of α1‐acid‐glycoprotein and interleukin‐6 have been observed among patients admitted to the hospital with advanced SARS‐CoV‐2 infection. A physiologically based pharmacokinetic (PBPK) approach is a useful tool to evaluate and predict disease‐related changes on drug pharmacokinetics. A PBPK model of imatinib has previously been developed and verified in healthy people and patients with cancer. In this study, the PBPK model of imatinib was successfully extrapolated to patients with SARS‐CoV‐2 infection by accounting for disease‐related changes in plasma α1‐acid‐glycoprotein concentrations and the potential drug interaction between imatinib and dexamethasone. The model demonstrated a good predictive performance in describing total and unbound imatinib concentrations in patients with SARS‐CoV‐2 infection. PBPK simulations highlight that an equivalent dose of imatinib may lead to substantially higher total drug concentrations in patients with SARS‐CoV‐2 infection compared to that in patients with cancer, while the unbound concentrations remain comparable between the 2 patient populations. This supports the notion that unbound trough concentration is a better exposure metric for dose adjustment of imatinib in patients with SARS‐CoV‐2 infection, compared to the corresponding total drug concentration. Potential strategies for refinement and generalization of the PBPK modeling approach in the patient population with SARS‐CoV‐2 are also provided in this article, which could be used to guide study design and inform dose adjustment in the future.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- Sydney Pharmacy SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Division of Pharmacotherapy and Experimental TherapeuticsUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Josephine A. Adattini
- Sydney Pharmacy SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Alan V. Boddy
- UniSA Cancer Research Institute and UniSA Clinical & Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Andrew J. McLachlan
- Sydney Pharmacy SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Clarke WA, Chatelut E, Fotoohi AK, Larson RA, Martin JH, Mathijssen RHJ, Salamone SJ. Therapeutic drug monitoring in oncology: International Association of Therapeutic Drug Monitoring and Clinical Toxicology consensus guidelines for imatinib therapy. Eur J Cancer 2021; 157:428-440. [PMID: 34597977 DOI: 10.1016/j.ejca.2021.08.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022]
Abstract
Although therapeutic drug monitoring (TDM) is an important tool in guiding drug dosing for other areas of medicine including infectious diseases, cardiology, psychiatry and transplant medicine, it has not gained wide acceptance in oncology. For imatinib and other tyrosine kinase inhibitors, a flat dosing approach is utilised for management of oral chemotherapy. There are many published studies examining the correlation of blood concentrations with clinical effects of imatinib. The International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) determined that there was a need to examine the published literature regarding utility of TDM in imatinib therapy and to develop consensus guidelines for TDM based on the available data. This article summarises the scientific evidence regarding TDM of imatinib, as well as the consensus guidelines developed by the IATDMCT.
Collapse
Affiliation(s)
- William A Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Etienne Chatelut
- Université de Toulouse, Inserm, Institut Claudius-Regaud, Toulouse, France
| | - Alan K Fotoohi
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Stockholm, 141 86, Sweden
| | - Richard A Larson
- Department of Medicine and Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Jennifer H Martin
- Centre for Drug Repurposing and Medicines Research, University of Newcastle. Level 3, Hunter Medical Research Institute, New Lambton Heights, 2305, New South Wales, Australia. https://twitter.com/jenhelenmar
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
4
|
Adiwidjaja J, Gross AS, Boddy AV, McLachlan AJ. Physiologically-based pharmacokinetic model predictions of inter-ethnic differences in imatinib pharmacokinetics and dosing regimens. Br J Clin Pharmacol 2021; 88:1735-1750. [PMID: 34535920 DOI: 10.1111/bcp.15084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/28/2021] [Accepted: 09/04/2021] [Indexed: 01/06/2023] Open
Abstract
AIMS This study implements a physiologically-based pharmacokinetic (PBPK) modelling approach to investigate inter-ethnic differences in imatinib pharmacokinetics and dosing regimens. METHODS A PBPK model of imatinib was built in the Simcyp Simulator (version 17) integrating in vitro drug metabolism and clinical pharmacokinetic data. The model accounts for ethnic differences in body size and abundance of drug-metabolising enzymes and proteins involved in imatinib disposition. Utility of this model for prediction of imatinib pharmacokinetics was evaluated across different dosing regimens and ethnic groups. The impact of ethnicity on imatinib dosing was then assessed based on the established range of trough concentrations (Css,min ). RESULTS The PBPK model of imatinib demonstrated excellent predictive performance in describing pharmacokinetics and the attained Css,min in patients from different ethnic groups, shown by prediction differences that were within 1.25-fold of the clinically-reported values in published studies. PBPK simulation suggested a similar dose of imatinib (400-600 mg/d) to achieve the desirable range of Css,min (1000-3200 ng/mL) in populations of European, Japanese and Chinese ancestry. The simulation indicated that patients of African ancestry may benefit from a higher initial dose (600-800 mg/d) to achieve imatinib target concentrations, due to a higher apparent clearance (CL/F) of imatinib compared to other ethnic groups; however, the clinical data to support this are currently limited. CONCLUSION PBPK simulations highlighted a potential ethnic difference in the recommended initial dose of imatinib between populations of European and African ancestry, but not populations of Chinese and Japanese ancestry.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - Annette S Gross
- Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline R&D, Sydney, NSW, Australia
| | - Alan V Boddy
- UniSA Cancer Research Institute and UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Andrew J McLachlan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Chen Y, Dong X, Wang Q, Liu Z, Dong X, Shi S, Xiao H. Factors Influencing the Steady-State Plasma Concentration of Imatinib Mesylate in Patients With Gastrointestinal Stromal Tumors and Chronic Myeloid Leukemia. Front Pharmacol 2020; 11:569843. [PMID: 33381028 PMCID: PMC7768902 DOI: 10.3389/fphar.2020.569843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Imatinib mesylate (IM) is the standard treatment for advanced, metastatic gastrointestinal stromal tumors (GISTs) and chronic myeloid leukemia (CML) with a fixed daily standard dosage via the oral route. Interindividual and intraindividual variability in plasma concentrations have been closely linked to the efficacy of IM therapy. Therefore, this review identifies and describes the key factors influencing the plasma concentration of IM in patients with GISTs and CML. We used the following keywords to search the PubMed, EMBASE, Ovid, Wangfang, and CNKI databases to identify published reports: IM, plasma concentration, GISTs, CML, drug combination/interaction, pathology, and genotype/genetic polymorphism, either alone or in combination. This literature review revealed that only 10 countries have reported the mean concentrations of IM in GISTs or CML patients and the clinical outcomes in different ethnic groups and populations. There were totally 24 different gene polymorphisms, which were examined for any potential influence on the steady-state plasma concentration of IM. As a result, some genotype locus made discrepant conclusion. Herein, the more sample capacity, multicenter, long-term study was worthy to carry out. Eleven reports were enumerated on clinical drug interactions with IM, while there is not sufficient information on the pharmacokinetic parameters altered by drug combinations with IM that could help in investigating the actual drug interactions. The drug interaction with IM should be paid more attention in the future research.
Collapse
Affiliation(s)
- Yan Chen
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiuhua Dong
- Department of Stomatology, The 1st Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - QiuJu Wang
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - ZhiXi Liu
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - XinWei Dong
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Sanjun Shi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - HongTao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
6
|
Dolton MJ, Chiang PC, Ma F, Jin JY, Chen Y. A Physiologically Based Pharmacokinetic Model of Vismodegib: Deconvoluting the Impact of Saturable Plasma Protein Binding, pH-Dependent Solubility and Nonsink Permeation. AAPS JOURNAL 2020; 22:117. [PMID: 32875428 DOI: 10.1208/s12248-020-00503-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022]
Abstract
Vismodegib displays unique pharmacokinetic characteristics including saturable plasma protein binding to alpha-1 acid glycoprotein (AAG) and apparent time-dependent bioavailability leading to non-linear PK with dose and time, significantly faster time to steady-state and lower than predicted accumulation. Given these unique characteristics, a PBPK model was developed to explore mechanistic insights into saturable protein binding and complex oral absorption processes and de-convolute the impact of these independent non-linear processes on vismodegib exposure. Simcyp V18 was used for model development; oral absorption was characterized using the multi-layer gut wall (M-ADAM) model and mechanistic permeability model, incorporating transport across an unstirred boundary layer (UBL) between the luminal fluid and enterocyte in each segment of the gastrointestinal tract. PBPK simulations were compared with observed PK data from clinical trials in oncology patients and healthy subjects. Saturation of vismodegib protein binding to AAG led to substantially lower total drug accumulation, time to steady-state, and Csstotal. For free exposure, Cssfree and accumulation were unchanged, but time to steady-state was substantially reduced. Vismodegib oral absorption declined with both dose and dosing frequency; the concentration gradient driving vismodegib oral absorption declined with multiple doses, leading to a 32% decrease in vismodegib fa from first dose to steady-state. Fed simulations suggested that increased solubility and dissolution are partially offset by reduced permeability across the UBL due to slower diffusion of micelle-bound drug. This work demonstrates the value of PBPK modeling to simultaneously capture and de-convolute multi-faceted absorption and disposition processes and provide mechanistic insights for compounds with complex pharmacokinetics.
Collapse
Affiliation(s)
- Michael J Dolton
- Clinical Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Po-Chang Chiang
- Small Molecule Pharmaceutical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Fang Ma
- Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jin Y Jin
- Clinical Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Yuan Chen
- Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|
7
|
Roosendaal J, Groenland SL, Rosing H, Lucas L, Venekamp N, Nuijen B, Huitema ADR, Beijnen JH, Steeghs N. Determination of the absolute bioavailability of oral imatinib using a stable isotopically labeled intravenous imatinib-d8 microdose. Eur J Clin Pharmacol 2020; 76:1075-1082. [PMID: 32430518 PMCID: PMC7351863 DOI: 10.1007/s00228-020-02888-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE The aim of this study was to ascertain whether the absolute bioavailability of oral imatinib (Glivec®) during steady state plasma pharmacokinetics in cancer patients could be determined through a concomitant intravenous administration of a single 100 μg microdose of deuterium labeled imatinib (imatinib-d8). Secondly, the usefulness of liquid chromatography-tandem mass spectrometry (LC-MS/MS) was investigated for simultaneous analysis of orally and intravenously administered imatinib. METHODS Included patients were on a stable daily dose of 400 mg oral imatinib prior to study participation. On day 1, patients received a 100 μg intravenous imatinib-d8 microdose 2.5 h after intake of the oral dose. Plasma samples were collected for 48 h. Imatinib and imatinib-d8 concentrations were simultaneously quantified using a validated LC-MS/MS assay. The absolute bioavailability was calculated by comparing the dose-normalized exposure with unlabeled and stable isotopically labeled imatinib in plasma. RESULTS A total of six patients were enrolled. All patients had a history of gastrointestinal stromal tumors (GIST). The median absolute bioavailability of oral imatinib at steady state was 76% (range 44-106%). Imatinib and imatinib-d8 plasma concentrations were quantified in all collected plasma samples, with no samples below the limit of quantification for imatinib-d8. CONCLUSION The absolute bioavailability of imatinib was successfully estimated at steady state plasma pharmacokinetics using the stable isotopically labeled microdose trial design. This study exhibits the use of a stable isotopically labeled intravenous microdose to determine the absolute bioavailability of an oral anticancer agent in patients with LC-MS/MS as the analytical tool.
Collapse
Affiliation(s)
- Jeroen Roosendaal
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Stefanie L Groenland
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Luc Lucas
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Nikkie Venekamp
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Adiwidjaja J, Boddy AV, McLachlan AJ. Implementation of a Physiologically Based Pharmacokinetic Modeling Approach to Guide Optimal Dosing Regimens for Imatinib and Potential Drug Interactions in Paediatrics. Front Pharmacol 2020; 10:1672. [PMID: 32082165 PMCID: PMC7002565 DOI: 10.3389/fphar.2019.01672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
Long-term use of imatinib is effective and well-tolerated in children with chronic myeloid leukaemia (CML) yet defining an optimal dosing regimen for imatinib in younger patients is a challenge. The potential interactions between imatinib and coadministered drugs in this "special" population also remains largely unexplored. This study implements a physiologically based pharmacokinetic (PBPK) modeling approach to investigate optimal dosing regimens and potential drug interactions with imatinib in the paediatric population. A PBPK model for imatinib was developed in the Simcyp Simulator (version 17) utilizing in silico, in vitro drug metabolism, and in vivo pharmacokinetic data and verified using an independent set of published clinical pharmacokinetic data. The model was then extrapolated to children and adolescents (aged 2-18 years) by incorporating developmental changes in organ size and maturation of drug-metabolising enzymes and plasma protein responsible for imatinib disposition. The PBPK model described imatinib pharmacokinetics in adult and paediatric populations and predicted drug interaction with carbamazepine, a cytochrome P450 (CYP)3A4 and 2C8 inducer, with a good accuracy (evaluated by visual inspections of the simulation results and predicted pharmacokinetic parameters that were within 1.25-fold of the clinically observed values). The PBPK simulation suggests that the optimal dosing regimen range for imatinib is 230-340 mg/m2/d in paediatrics, which is supported by the recommended initial dose for treatment of childhood CML. The simulations also highlighted that children and adults being treated with imatinib have similar vulnerability to CYP modulations. A PBPK model for imatinib was successfully developed with an excellent performance in predicting imatinib pharmacokinetics across age groups. This PBPK model is beneficial to guide optimal dosing regimens for imatinib and predict drug interactions with CYP modulators in the paediatric population.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Alan V. Boddy
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
- University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | | |
Collapse
|
9
|
Westerdijk K, Desar IME, Steeghs N, van der Graaf WTA, van Erp NP. Imatinib, sunitinib and pazopanib: From flat-fixed dosing towards a pharmacokinetically guided personalized dose. Br J Clin Pharmacol 2020; 86:258-273. [PMID: 31782166 PMCID: PMC7015742 DOI: 10.1111/bcp.14185] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are anti‐cancer drugs that target tyrosine kinases, enzymes that are involved in multiple cellular processes. Currently, multiple oral TKIs have been introduced in the treatment of solid tumours, all administered in a fixed dose, although large interpatient pharmacokinetic (PK) variability is described. For imatinib, sunitinib and pazopanib exposure‐treatment outcome (efficacy and toxicity) relationships have been established and therapeutic windows have been defined, therefore dose optimization based on the measured blood concentration, called therapeutic drug monitoring (TDM), can be valuable in increasing efficacy and reducing the toxicity of these drugs. In this review, an overview of the current knowledge on TDM guided individualized dosing of imatinib, sunitinib and pazopanib for the treatment of solid tumours is presented. We summarize preclinical and clinical data that have defined thresholds for efficacy and toxicity. Furthermore, PK models and factors that influence the PK of these drugs which partly explain the interpatient PK variability are summarized. Finally, pharmacological interventions that have been performed to optimize plasma concentrations are described. Based on current literature, we advise which methods should be used to optimize exposure to imatinib, sunitinib and pazopanib.
Collapse
Affiliation(s)
- Kim Westerdijk
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ingrid M E Desar
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands
| | - Winette T A van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Medical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands
| | - Nielka P van Erp
- Department of Clinical Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | | |
Collapse
|
10
|
Cardoso E, Csajka C, Schneider MP, Widmer N. Effect of Adherence on Pharmacokinetic/Pharmacodynamic Relationships of Oral Targeted Anticancer Drugs. Clin Pharmacokinet 2019. [PMID: 28634655 DOI: 10.1007/s40262-017-0571-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emergence of oral targeted anticancer agents transformed several cancers into chronic conditions with a need for long-term oral treatment. Although cancer is a life-threatening condition, oncology medication adherence-the extent to which a patient follows the drug regimen that is intended by the prescriber-can be suboptimal in the long term, as in any other chronic disease. Poor adherence can impact negatively on clinical outcomes, notably because most of these drugs are given as a standard non-individualized dosage despite marked inter-individual variabilities that can lead to toxic or inefficacious drug concentrations. This has been especially studied with the prototypal drug imatinib. In the context of therapeutic drug monitoring (TDM), increasingly advocated for oral anticancer treatment optimization, unreported suboptimal adherence affecting drug intake history may lead to significant bias in the concentration interpretation and inappropriate dosage adjustments. In the same way, suboptimal adherence may also bias the results of pharmacokinetic modeling studies, which will affect in turn Bayesian TDM interpretation that relies on such population models. Detailed knowledge of the influence of adherence on plasma concentrations in pharmacokinetic studies or in routine TDM programs is however presently missing in the oncology field. Studies on this topic are therefore eagerly awaited to better pilot the treatment of cancer with the new targeted agents and to find their optimal dosage regimen. Hence, the development and assessment of effective medication adherence programs are warranted for these treatments.
Collapse
Affiliation(s)
- Evelina Cardoso
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Chantal Csajka
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Marie P Schneider
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.,Community Pharmacy, Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Widmer
- Pharmacy of Eastern Vaud Hospitals, Vevey, Switzerland. .,Division of Clinical Pharmacology, Service of Biomedicine, Lausanne University Hospital, Rue du Bugnon 17, 1011, Lausanne, Switzerland.
| |
Collapse
|
11
|
Abstract
Pazopanib is an inhibitor of the vascular endothelial growth factor receptor, platelet-derived growth factor receptor, fibroblast growth factor receptor and stem cell receptor c-Kit, and has been approved for the treatment of renal cell carcinoma and soft tissue sarcoma. The pharmacokinetics of pazopanib are complex and are characterized by pH-dependent solubility, large interpatient variability and low, non-linear and time-dependent bioavailability. Exposure to pazopanib is increased by both food and coadministration of ketoconazole, but drastically reduced by proton pump inhibitors. Studies have demonstrated relationships between systemic exposure to pazopanib and toxicity, such as hypertension. Furthermore, a strong relationship between pazopanib trough level ≥20 mg/L and both tumor shrinkage and progression-free survival has been established. At the currently approved daily dose of 800 mg, approximately 20% of patients do not reach this threshold and may be at risk of suboptimal treatment. As a result of this, clinical trials have explored individualized pazopanib dosing, which demonstrate the safety and feasibility of individualized pazopanib dosing based on trough levels. In summary, we provide an overview of the complex pharmacokinetic and pharmacodynamic profiles of pazopanib and, based on the available data, we propose optimized dosing strategies.
Collapse
|