1
|
Suzuki Y, Matsunaga N, Aoyama T, Ogami C, Hasegawa C, Iida S, To H, Kitahara T, Tsuji Y. Population pharmacokinetic analysis identifies an absorption process model for mycophenolic acid in patients with renal transplant. Clin Transl Sci 2024; 17:e70097. [PMID: 39629510 PMCID: PMC11615510 DOI: 10.1111/cts.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 12/08/2024] Open
Abstract
The pharmacokinetics (PKs) of mycophenolic acid (MPA) exhibit considerable complexity and large variability. We developed a population pharmacokinetic (popPK) model to predict the complex PK of MPA by examining an absorption model. Forty-two patients who had undergone renal transplantation were included in this study. popPK analysis, incorporating several absorption models, was performed using the nonlinear mixed-effects modeling program NONMEM. The MPA area under the concentration-time curve at 0-12 h (AUC0-12) was simulated using the final model to calculate the recommended dose. The PK of MPA was adequately described using a two-compartment model incorporating sequential zero- and first-order absorption with lag time. Total body weight, renal function (RF), and posttransplantation day (PTD) were included as covariates affecting MPA PK. The final model estimates were 7.56, 11.6 L/h, 104.0 L, 17.3 L/h, 169.0 L, 0.0453, 0.283, and 1.95 h for apparent nonrenal clearance, apparent renal clearance, apparent central volume of distribution, apparent intercompartmental clearance, apparent peripheral volume of distribution, absorption half-life, lag time, and duration of zero-order absorption, respectively. Simulation results showed that a dose regimen of 500-1000 mg twice daily is recommended during the early posttransplantation period. However, dose reduction could be required with increased PTD and decreased RF. The complex PK of MPA was explained using an absorption model. The developed popPK model can provide useful information regarding individual dosing regimens based on PTD and RF.
Collapse
Affiliation(s)
- Yuki Suzuki
- Laboratory of Clinical Pharmacometrics, School of PharmacyNihon UniversityFunabashiChibaJapan
| | - Noriko Matsunaga
- Department of Hospital PharmacyNagasaki University HospitalNagasakiNagasakiJapan
| | - Takahiko Aoyama
- Laboratory of Clinical Pharmacometrics, School of PharmacyNihon UniversityFunabashiChibaJapan
| | - Chika Ogami
- Department of Medical Pharmaceutics, School of Pharmacy and Pharmaceutical SciencesUniversity of ToyamaToyamaToyamaJapan
| | - Chihiro Hasegawa
- Laboratory of Clinical Pharmacometrics, School of PharmacyNihon UniversityFunabashiChibaJapan
| | - Satofumi Iida
- Laboratory of Clinical Pharmacometrics, School of PharmacyNihon UniversityFunabashiChibaJapan
- Department of Clinical PharmacologyYokohama University of PharmacyYokohamaKanagawaJapan
| | - Hideto To
- Department of Medical Pharmaceutics, School of Pharmacy and Pharmaceutical SciencesUniversity of ToyamaToyamaToyamaJapan
| | - Takashi Kitahara
- Department of Clinical Pharmacology, Graduate School of MedicineYamaguchi UniversityUbeYamaguchiJapan
| | - Yasuhiro Tsuji
- Laboratory of Clinical Pharmacometrics, School of PharmacyNihon UniversityFunabashiChibaJapan
| |
Collapse
|
2
|
Mishra S, Shelke V, Dagar N, Lech M, Gaikwad AB. Immunosuppressants against acute kidney injury: what to prefer or to avoid? Immunopharmacol Immunotoxicol 2024; 46:341-354. [PMID: 38477877 DOI: 10.1080/08923973.2024.2330641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) is a critical global health issue associated with high mortality rates, particularly in patients undergoing renal transplants and major surgeries. These individuals often receive immunosuppressants to dampen immune responses, but the impact of these drugs on AKI remains unclear. OBJECTIVE This review aims to provide a detailed understanding of the effects of different classes of immunosuppressants against AKI, elucidating their role in either exacerbating or mitigating the occurrence or progression of AKI. METHODS Several preclinical and clinical reports were analyzed to evaluate the impact of various immunosuppressants on AKI. Relevant preclinical and clinical studies were reviewed through different databases such as Scopus, PubMed, Google Scholar, and ScienceDirect, and official websites like https://clinicaltrials.gov to understand the mechanisms underlying the effects of immunosuppressants on kidney function. RESULTS AND DISCUSSION Specific immunosuppressants have been linked to the progression of AKI, while others demonstrate renoprotective effects. However, there is no consensus on the preferred or avoided immunosuppressants for AKI patients. This review outlines the classes of immunosuppressants commonly used and their impact on AKI, providing guidance for physicians in selecting appropriate drugs to prevent or ameliorate AKI. CONCLUSION Understanding the effects of immunosuppressants on AKI is crucial for optimizing patient care. This review highlights the need for further research to determine the most suitable immunosuppressants for AKI patients, considering both their efficacy and potential side effects.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Maciej Lech
- Division of Nephrology, Department of Medicine IV, LMU University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|
3
|
Tsoi A, Nikolopoulos D, Parodis I. Advances in the pharmacological management of systemic lupus erythematosus. Expert Opin Pharmacother 2024; 25:705-716. [PMID: 38756102 DOI: 10.1080/14656566.2024.2354457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Despite setbacks in clinical trials for systemic lupus erythematosus (SLE), three drugs have been approved for SLE and lupus nephritis (LN) treatment in the past decade. Several ongoing clinical trials, some viewed optimistically by the scientific community, underscore the evolving landscape. Emerging clinical data have established specific therapeutic targets in routine clinical practice for treating SLE, aiming to improve long-term outcomes. AREAS COVERED Research related to treatment of SLE and LN is discussed, focusing on randomized clinical trials during the last 5 years and recommendations for the management of SLE published by the European Alliance of Associations for Rheumatology (EULAR), American College of Rheumatology (ACR), Asia Pacific League of Associations for Rheumatology (APLAR), and Pan-American League of Associations of Rheumatology (PANLAR). EXPERT OPINION The landscape of SLE and LN treatments is evolving, as new drugs and combination treatment approaches redefine the traditional concepts of induction and maintenance treatment phases. As the therapeutic armamentarium in SLE continues to expand, the research focus is shifting from the imperative for new therapies to advancing our understanding of optimal treatment selection for individual patients, steering toward precision medicine strategies.
Collapse
Affiliation(s)
- Alexander Tsoi
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Dionysis Nikolopoulos
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
4
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
5
|
Rexiti K, Jiang X, Kong Y, Chen X, Liu H, Peng H, Wei X. Population pharmacokinetics of mycophenolic acid and dose optimisation in adult Chinese kidney transplant recipients. Xenobiotica 2023; 53:603-612. [PMID: 37991412 DOI: 10.1080/00498254.2023.2287168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
1. This study aimed to establish a population pharmacokinetic (PPK) model of mycophenolic acid (MPA), quantify the effect of clinical factors and pharmacogenomics of MPA, and optimise the dosage for adult kidney transplant recipients.2. One-hundred and four adult renal transplant patients were enrolled. The PPK model was established using the Phoenix® NMLE software and the stepwise methods were filtered for significant covariates. Monte Carlo simulations were performed to optimise the dosage regimen.3. A two-compartment model with first-order absorption and elimination (including lag time) provided a more accurate description of MPA pharmacokinetics. Serum albumin (ALB) significantly affected the central apparent clearance (CL/F), whereas post-transplant time and creatinine clearance were associated with a central apparent volume of distribution (V/F). The estimated population values obtained by the final model were 17.5 L/h and 93.97 L for CL/F and V/F, respectively. Simulation results revealed that larger mycophenolate mofetil doses are required as the ALB concentration decreases. This study established a PPK model of MPA and validated it using various methods. ALB significantly affected CL/F and recommended optimal dose strategies were given based on the final model. These results provide a reference for the personalised therapy of MPA for kidney transplant patients.
Collapse
Affiliation(s)
- Kaisaner Rexiti
- School of Pharmacy, Nanchang University, Nanchang, China
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuehui Jiang
- Department of Pharmacy, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, China
| | - Ying Kong
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Chen
- School of Pharmacy, Nanchang University, Nanchang, China
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Liu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongwei Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Wei
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Rong Y, Wichart J, Hamiwka L, Kiang TKL. Significant Effects of Renal Function on Mycophenolic Acid Total Clearance in Pediatric Kidney Transplant Recipients with Population Pharmacokinetic Modeling. Clin Pharmacokinet 2023; 62:1289-1303. [PMID: 37493886 DOI: 10.1007/s40262-023-01280-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Mycophenolic acid (MPA) is an immunosuppressant commonly prescribed in pediatric kidney transplantation to prevent graft rejection. Large variabilities in MPA plasma exposures have been observed in this population, which could result in severe adverse effects. The majority of the MPA pharmacokinetic data have been reported in adult populations, whereas information in pediatric patients is still very limited. The objective of this study was to establish a novel, nonlinear mixed-effects model for MPA and investigate the clinical variables affecting MPA population pharmacokinetics in pediatric kidney transplant recipients. METHODS Data were collected retrospectively from pediatric kidney transplant patients (≤ 18 years when MPA concentrations were initially collected; on oral administration of mycophenolate mofetil) in Calgary, Alberta, Canada. Nonlinear mixed-effect modeling was conducted using stochastic approximation expectation-maximization in Monolix 2021R2 (Lixoft SAS, France) to determine population pharmacokinetic estimates, interindividual variabilities, and interoccasional variabilities. Covariate models were constructed using the Model Proposal function in Monolix in conjunction with a systematic stepwise inclusion/elimination protocol. The best model was selected based on objective function values, relative standard errors, goodness-of-fit plots, prediction-corrected visual predictive checks, and numerical predictive checks. RESULTS A total of 50 pediatric kidney transplant patients (25 female) with 219 MPA plasma concentration-time profiles were included. The average age (± standard deviation) and posttransplant time for the sample population were 12.8 ± 4.8 years and 762 ± 1160 days, respectively. The majority of study subjects (i.e., > 85% based on all occasions) were co-administered tacrolimus. A two-compartment, first-order absorption with lag time and linear elimination structural model with lognormal distributed proportional residual errors best described the MPA concentration-time data. The absorption rate constant (2.52 h-1 or 0.042 min-1), lag time (0.166 h or 9.96 min), volumes of distributions of the central (22.8 L) and peripheral (216 L) compartments, and intercompartment clearance (17.6 L h-1 or 0.293 L min-1) were consistent with literature values; whereas total MPA clearance (0.72 L h-1 or 0.012 L min-1) was relatively reduced, likely due to the general lack of cyclosporine interactions and the stabilized graft functions from significantly longer posttransplant time in our sample population. Of the clinical variables tested, only estimated glomerular filtration rate (eGFR) was identified a significant covariate affecting total MPA clearance with a positive, exponential relationship. The final population pharmacokinetic model was successfully evaluated/validated using a variety of complementary methods. CONCLUSION We have successfully constructed and validated a novel population pharmacokinetic model of MPA in pediatric kidney transplant patients. A positive, nonlinear relationship between eGFR and total MPA clearance identified in our model is likely attributed to multiple concurrent mechanisms, which warrant further systematic investigations.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Room 3-142D, 11361-87 Avenue, Edmonton, AB, T6G 2E1, Canada
| | - Jenny Wichart
- Alberta Health Services, Pharmacy Services, Calgary, AB, Canada
| | - Lorraine Hamiwka
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Room 3-142D, 11361-87 Avenue, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
7
|
Rong Y, Kiang T. Clinical Evidence on the Purported Pharmacokinetic Interactions between Corticosteroids and Mycophenolic Acid. Clin Pharmacokinet 2023; 62:157-207. [PMID: 36848031 DOI: 10.1007/s40262-023-01212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 03/01/2023]
Abstract
Corticosteroids (steroids) are commonly used concurrently with mycophenolic acid (MPA) as the first-line immunosuppression therapy for the prevention of rejection in solid organ transplantations. Steroids are also commonly administered with MPA in various autoimmune disorders such as systemic lupus erythematosus and idiopathic nephrotic syndrome. Despite various review articles having suggested the presence of pharmacokinetic interactions between MPA and steroids, definitive data have not yet been demonstrated. The aim of this Current Opinion is to critically evaluate the available clinical data and propose the optimal study design for characterising the MPA-steroid pharmacokinetic interactions. The PubMed and Embase databases were searched for relevant clinical articles in English as of September 29, 2022, where a total of 8 papers have been identified as supporting and 22 as non-supporting the purported drug interaction. To objectively evaluate the data, novel assessment criteria to effectively diagnose the interaction based on known MPA pharmacology were formulated, including the availability of independent control groups, prednisolone concentrations, MPA metabolite data, unbound MPA concentrations, and the characterisations of entero-hepatic recirculation and MPA renal clearance. Overall, the majority of the identified corticosteroid data were pertaining to prednisone or prednisolone. Our assessment indicated that no conclusive mechanistic data supporting the interaction are available in the current clinical literature, and further studies are required to quantify the effects/mechanisms of steroid-tapering or withdrawal on MPA pharmacokinetics. This current opinion provides justification for further translational investigations, as this particular drug interaction has the potential to exert significant adverse outcomes in patients prescribed MPA.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Katz Group Centre for Pharmacy and Health Research, Room 3-142D, 11361-87 Avenue, Edmonton, AB, T6G 2E1, Canada
| | - Tony Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Katz Group Centre for Pharmacy and Health Research, Room 3-142D, 11361-87 Avenue, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
8
|
Catić‐Đorđević A, Stefanović N, Pavlović I, Pavlović D, Živanović S, Kundalić A, Veličković‐Radovanović R, Mitić B. Utility of salivary mycophenolic acid concentration monitoring: Modeling and Monte Carlo validation approach. Pharmacol Res Perspect 2022; 10:e01034. [PMID: 36440680 PMCID: PMC9703583 DOI: 10.1002/prp2.1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/29/2022] Open
Abstract
The results of the previous studies demonstrated an association between mycophenolic acid (MPA) exposure, serum albumin level (ALB), and adverse effects in kidney transplant patients. The aim was the identification of mathematical correlation and association between both, total and unbound MPA concentration in relation to ALB, body mass (BM), age and estimated glomerular filtration rate (eGFR) in stable kidney transplant recipients. Furthermore, investigation was conducted with the aim to clarify the role of salivary concentration (CSAL ) of MPA in adverse effect profile. In order to analyze the association between total and salivary concentration of MPA in relation to ALB, BM, age and eGFR, a least squares method for determining the correlation between these parameters was performed. In addition, derived mathematical model based on experimental data can also be performed and simulated through the Monte Carlo (MC) approach. Adverse effects were grouped according to the nature of symptoms and scored by a previously published validated system. Numerically calculated values of CSAL from the models [CSAL = f(ALB, BM, age, eGFR, CP ) = a00 + a10 *(ALB, BM, age, eGFR) + a01 *CP ] were then compared with those from validation set of patients, where the best fitting model was for ALB [CSAL = 54.96-1.64*ALB +13.4*CP ]. Adverse effects estimation showed the difference in esthetic score, positively correlated with CSAL in the lower ALB group (145.41 ± 219.02 vs. 354.08 ± 262.19; with statistical significance p = .014) and almost significant for gastrointestinal score (167.69 ± 174.79 vs. 347.55 ± 320.95; p = .247). The study showed that CSAL MPA may contribute to management of adverse effects, but these findings require confirmation of clinical utility.
Collapse
Affiliation(s)
| | - Nikola Stefanović
- Faculty of Medicine, Department of PharmacyUniversity of NisNisSerbia
| | - Ivan Pavlović
- Faculty of Mechanical EngineeringUniversity of NisNisSerbia
| | - Dragana Pavlović
- Faculty of Medicine, Department of PharmacyUniversity of NisNisSerbia
| | - Slavoljub Živanović
- Faculty of Medicine, Research Center for BiomedicineUniversity of NisNisSerbia
| | - Ana Kundalić
- Faculty of Medicine, Department of PharmacyUniversity of NisNisSerbia
| | | | - Branka Mitić
- Faculty of MedicineUniversity of NisNisSerbia
- Clinic of NephrologyUniversity Clinical Center NisNisSerbia
| |
Collapse
|
9
|
Santacruz JC, Mantilla MJ, Rueda I, Pulido S, Rodriguez-Salas G, Londono J. A Practical Perspective of the Hematologic Manifestations of Systemic Lupus Erythematosus. Cureus 2022; 14:e22938. [PMID: 35399432 PMCID: PMC8986464 DOI: 10.7759/cureus.22938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory disease with an unknown etiology that can affect any organ or system of the human body. Hematological, renal, or central nervous system manifestations in these patients result in great morbidity because high doses of glucocorticoids, cytotoxic medications, or biological drugs are required to control these manifestations. It is noteworthy that hematological involvement predominates during the first years of the disease and tends to last over time, with the premise that it may be the initial manifestation of the disease. Clear examples of this are the cases of hemolytic anemia and immune thrombocytopenia that can be initially classified as idiopathic or primary to be later classified as secondary when associated with infections, medications, neoplasms, or autoimmune diseases. The spectrum of hematologic manifestations in SLE is very broad, including lymphopenia, anemia, thrombocytopenia, or pancytopenia. In some cases, lymphadenopathy and splenomegaly are also identified. The vast majority of these manifestations denote high disease activity. However, many of these alterations have a multifactorial cause that must be taken into account to adopt a more complete therapeutic approach. The objective of this review is to characterize in detail the hematological manifestations of SLE to offer clinicians a practical vision of its diagnosis and treatment.
Collapse
|
10
|
Significant Correlations between p-Cresol Sulfate and Mycophenolic Acid Plasma Concentrations in Adult Kidney Transplant Recipients. Clin Drug Investig 2022; 42:207-219. [PMID: 35182318 DOI: 10.1007/s40261-022-01121-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Mycophenolic acid (MPA) is a commonly prescribed life-long immunosuppressant for kidney transplant recipients. The frequently observed large variations in MPA plasma exposure may lead to severe adverse outcomes; therefore, characterizations of contributing factors can potentially improve the precision dosing of MPA. Our group recently reported the potent inhibitory effects of p-cresol (a protein-bound uremic toxin that can be accumulated in kidney transplant patients) on the hepatic metabolism of MPA in human in vitro models. Based on these data, the hypothesis for this clinical investigation was that a direct correlation between p-cresol and MPA plasma exposure should be evident in adult kidney transplant recipients. METHODS Using a prospective and observational approach, adult kidney transplant recipients within the first year after transplant on oral mycophenolate mofetil (with tacrolimus ± prednisone) were screened for recruitment. The exclusion criteria were cold ischemia time > 30 h, malignancy, pregnancy, severe renal dysfunction (i.e., estimated glomerular filtration rate, eGFR, < 10 mL/min/1.73 m2), active graft rejection, or MPA intolerance. Patients' demographic and biochemistry data were collected. Total and free plasma concentrations of MPA, MPA glucuronide (MPAG), and total p-cresol sulfate (the predominant, quantifiable form of p-cresol in the plasma) were quantified using validated assays. Correlational and categorical analyses were performed using GraphPad Prism. RESULTS Forty patients (11 females) were included: donor type (living/deceased: 20/20), induction regimen (basiliximab/thymoglobulin/basiliximab followed by thymoglobulin: 35/3/2), post-transplant time (74 ± 60 days, mean ± standard deviation), age (53.7 ± 12.4 years), bodyweight (79.8 ± 18.5 kg), eGFR (51.9 ± 18.0 mL/min/1.73 m2), serum albumin (3.6 ± 0.5 g/dL), prednisone dose (18.5 ± 13.2 mg, n = 33), and tacrolimus trough concentration (9.4 ± 2.4 µg/L). Based on Spearman analysis, significant control correlations supporting the validity of our dataset were observed between total MPA trough concentration (C0) and total MPAG C0 (correlation coefficient [R] = 0.39), ratio of total MPAG C0-to-total MPA C0 and post-transplant time (R = - 0.56), total MPAG C0 and eGFR (R = - 0.35), and p-cresol sulfate concentration and eGFR (R = - 0.70). Our primary analysis indicated the novel observation that total MPA C0 (R = 0.39), daily dose-normalized total MPA C0 (R = 0.32), and bodyweight-normalized total MPA C0 (R = 0.32) were significantly correlated with plasma p-cresol sulfate concentrations. Consistently, patients categorized with elevated p-cresol sulfate concentrations (i.e., ≥ median of 3.2 µg/mL) also exhibited increased total MPA C0 (by 57 % vs those below median), daily dose-normalized total MPA C0 (by 89 %), and bodyweight-normalized total MPA C0 (by 62 %). Our secondary analyses with MPA metabolites, unbound concentrations, free fractions, and MPA metabolite ratios supported additional potential interacting mechanisms. CONCLUSION We have identified a novel, positive association between p-cresol sulfate exposure and total MPA C0 in adult kidney transplant recipients, which is supported by published mechanistic in vitro data. Our findings confirm a potential role of p-cresol as a significant clinical variable affecting the pharmacokinetics of MPA. These data also provide the justifications for conducting subsequent full-scale pharmacokinetic-pharmacodynamic studies to further characterize the cause-effect relationships of this interaction, which could also rule out potential confounding variables not adequately controlled in this correlational study.
Collapse
|
11
|
Rong Y, Patel V, Kiang TKL. Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: physiological, genomic, and drug interactions leading to the prediction of drug effects. Expert Opin Drug Metab Toxicol 2022; 17:1369-1406. [PMID: 35000505 DOI: 10.1080/17425255.2021.2027906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mycophenolic acid (MPA) is a widely used immunosuppressant in transplantation and autoimmune disease. Highly variable pharmacokinetics have been observed with MPA, but the exact mechanisms remain largely unknown. AREAS COVERED The current review provided a critical, comprehensive update of recently published population pharmacokinetic/dynamic models of MPA (n=16 papers identified from PubMed and Embase, inclusive from January 2017 to August 2021), with specific emphases on the intrinsic and extrinsic factors influencing the pharmacology of MPA. The significance of the identified covariates, potential mechanisms, and comparisons to historical literature have been provided. EXPERT OPINION While select covariates affecting the population pharmacokinetics of MPA are consistently observed and mechanistically supported, some variables have not been regularly reported and/or lacked mechanistic explanation. Very few pharmacodynamic models were available, pointing to the need to extrapolate pharmacokinetic findings. Ideal models of MPA should consist of: i) utilizing optimal sampling points to allow the characterizations of absorption, re-absorption, and elimination phases; ii) characterizing unbound/total MPA, MPA metabolites, plasma/urinary concentrations, and genetic polymorphisms to facilitate mechanistic interpretations; and iii) incorporating actual outcomes and pharmacodynamic data to establish clinical relevance. We anticipate the field will continue to expand in the next 5 to 10 years.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Vrunda Patel
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Li H, Fu ZY, Arslan ME, Cho D, Lee H. Differential diagnosis and management of immune checkpoint inhibitor-induced colitis: A comprehensive review. World J Exp Med 2021; 11:79-92. [PMID: 36246150 PMCID: PMC9553980 DOI: 10.5493/wjem.v11.i6.79] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/08/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are a new class of cancer pharmacotherapy consisting of antibodies that block inhibitory immune regulators such as cytotoxic T lymphocyte antigen 4, programmed cell death 1 and programmed death-ligand 1. Checkpoint blockade by ICIs reactivates a tumor-specific T cell response. Immune-related adverse events can occur in various organs including skin, liver, and gastrointestinal tract. Mild to severe colitis is the most common side effect with some experiencing rapid progression to more serious complications including bowel perforation and even death. Prompt diagnosis and management of ICI-induced colitis is crucial for optimal outcome. Unfortunately, its clinical, endoscopic and histopathologic presentations are non-specific and overlap with those of colitis caused by other etiologies, such as infection, medication, graft-versus-host disease and inflammatory bowel disease. Thus, a definitive diagnosis can only be rendered after these other possible etiologies are excluded. Sometimes an extensive clinical, laboratory and radiologic workup is required, making it challenging to arrive at a prompt diagnosis. Most patients experience full resolution of symptoms with corticosteroids and/or infliximab. For ICI-induced colitis that is treatment-refractory, small scale studies offer alternative strategies, such as vedolizumab and fecal microbiota transplantation. In this review, we focus on the clinical features, differential diagnosis, and management of ICI-induced colitis with special attention to emerging treatment options for treatment-refractory ICI-induced colitis.
Collapse
Affiliation(s)
- Hua Li
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY 12208, United States
| | - Zhi-Yan Fu
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY 12208, United States
| | - Mustafa Erdem Arslan
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY 12208, United States
| | - Daniel Cho
- Schenectady Pathology Associates, Ellis Hospital, Schenectady, NY 12308, United States
| | - Hwajeong Lee
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY 12208, United States
| |
Collapse
|
13
|
Yang CL, Sheng CC, Liao GY, Su Y, Feng LJ, Xia Q, Jiao Z, Xu DJ. Genetic polymorphisms in metabolic enzymes and transporters have no impact on mycophenolic acid pharmacokinetics in adult kidney transplant patients co-treated with tacrolimus: A population analysis. J Clin Pharm Ther 2021; 46:1564-1575. [PMID: 34312870 DOI: 10.1111/jcpt.13488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/05/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Mycophenolate mofetil, an ester prodrug of mycophenolic acid (MPA), is widely used to prevent graft rejection after kidney transplantation. The pharmacokinetic (PK) of MPA has been extensively studied, which revealed a high degree of variability. An integrated population PK (PopPK) model of MPA and its main metabolite mycophenolic acid glucuronide (MPAG) was developed using the adult patients who underwent kidney transplant and were administered oral mycophenolate mofetil combined with tacrolimus. METHODS In total, 917 MPA and 740 MPAG concentrations in191 adult patients were analysed via nonlinear mixed-effects modelling. The concentration-time data were adequately described using a chain compartment model, including central and peripheral compartments for MPA and a central compartment for MPAG. Stepwise forward inclusion and backward elimination procedures were used to investigate the effects of genetic polymorphisms, including in UGT1A8, UGT1A9, UGT2B7, ABCB1, ABCC2, ABCG2, SLCO1B1, SLCO1B3, and HNF1α. RESULTS AND DISCUSSION These genetic polymorphisms in metabolic enzymes and transporters have no obvious impact on the PK of MPA in adult patients who underwent kidney transplant and were co-treated with tacrolimus. The post-transplant time, serum albumin, and creatinine clearance were identified as significant covariates affecting the PK of MPA and MPAG, which should be considered in the clinical use of mycophenolate mofetil. WHAT IS NEW AND CONCLUSION We established a PopPK model of MPA and MPAG in Chinese adult patients who underwent kidney transplant and were co-treated with tacrolimus. Genetic polymorphisms in metabolic enzymes and transporters showed no obvious impact on MMF PK. A model-informed dosing strategy was proposed by the established model, and MMF dose adjustment should be based on ALB levels and the post-transplantation time.
Collapse
Affiliation(s)
- Chun-Lan Yang
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chang-Cheng Sheng
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, China
| | - Gui-Yi Liao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Su
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Juan Feng
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quan Xia
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Du-Juan Xu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Ye Q, Wang G, Lu J, Huang Y, Zhang J, Zhu L, Zhu Y, Lan J, Li Z, Liu Y, Xu H, Li Z. Exposure levels of mycophenolic acid are associated with comorbidities in children with systemic lupus erythematosus. Lupus 2021; 30:1808-1818. [PMID: 34304630 DOI: 10.1177/09612033211034555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Little is known about the relationship between exposure levels of mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), and comorbidities of systemic lupus erythematosus (SLE) in children. This study aims to explore this association. METHODS Longitudinal data from SLE children, who were taking MMF for immunosuppression and under therapeutic drug monitoring (TDM), were retrospectively collected. Area under the concentration-time curve of mycophenolic acid (MPA) over 24 hours (AUC0-24h) was estimated with Bayesian methods. Logistic regression and random forest models were used to explore the association between comorbidities and MPA exposure levels. RESULTS This study included 107 children with 358 times of follow-up (median age 169.02 months). The incidence of diabetes, acute kidney injury (AKI), or pneumonia was significantly associated with AUC0-24h (odds ratio [OR] 0.991, 95% confidence interval [CI] 0.982-0.999), SLE duration (OR 1.012, 95% CI 1.002-1.022), lymphocyte percentage (OR 0.959, 95% CI 0.925-0.991), plasma albumin levels (OR 0.891, 95% CI 0.843-0.940), use of aspirin (OR 0.292, 95% CI 0.126-0.633) and hydroxychloroquine (OR 0.407, 95% CI 0.184-0.906). The random forest model showed that albumin and AUC0-24h were two important predictors. The case group (with the three comorbidities) had a mean AUC0-24h of 73.63 mg · h/L, while the control group had a mean AUC0-24h of 100.39 mg · h/L. CONCLUSIONS Increased levels of MPA exposure are associated with decreased incidence odds of diabetes, AKI or pneumonia in SLE children. An AUC0-24h of 100.39 mg · h/L or an AUC0-12h of 50.20 mg · h/L could be used as the targeted exposure level for clinical practice.
Collapse
Affiliation(s)
- Qiaofeng Ye
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Guangfei Wang
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jinmiao Lu
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yidie Huang
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Junqi Zhang
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Zhu
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yiqing Zhu
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jianger Lan
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Ziwei Li
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yubing Liu
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Zhiping Li
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
15
|
Rong Y, Jun H, Kiang TKL. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharmacol 2021; 87:1730-1757. [PMID: 33118201 DOI: 10.1111/bcp.14590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mycophenolic acid (MPA) is widely used in paediatric kidney transplant patients and sometimes prescribed for additional indications. Population pharmacokinetic or pharmacodynamic modelling has been frequently used to characterize the fixed, random and covariate effects of MPA in adult patients. However, MPA population pharmacokinetic data in the paediatric population have not been systematically summarized. The objective of this narrative review was to provide an up-to-date critique of currently available paediatric MPA population pharmacokinetic models, with emphases on modelling techniques, pharmacological findings and clinical relevance. PubMed and EMBASE were searched from inception of database to May 2020, where a total of 11 studies have been identified representing kidney transplant (n = 4), liver transplant (n = 1), haematopoietic stem cell transplant (n = 1), idiopathic nephrotic syndrome (n = 2), systemic lupus erythematosus (n = 2), and a combined population consisted of kidney, liver and haematopoietic stem cell transplant patients (n = 1). Critical analyses were provided in the context of MPA absorption, distribution, metabolism, excretion and bioavailability in this paediatric database. Comparisons to adult patients were also provided. With respect to clinical utility, Bayesian estimation models (n = 6) with acceptable accuracy and precision for MPA exposure determination have also been identified and systematically evaluated. Overall, our analyses have identified unique features of MPA clinical pharmacology in the paediatric population, while recognizing several gaps that still warrant further investigations. This review can be used by pharmacologists and clinicians for improving MPA pharmacokinetic-pharmacodynamic modelling and patient care.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Heajin Jun
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Tenório JR, Tuma M, Martins F, Ortega KL, Cristelli M, Gallottini M. Diagnosis and management of oral ulcerations associated with mycophenolate mofetil in kidney transplantation. SPECIAL CARE IN DENTISTRY 2020; 40:605-610. [PMID: 32950040 DOI: 10.1111/scd.12522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 11/28/2022]
Abstract
AIMS The final diagnosis of oral mucosal ulcerations in solid organ transplant recipients represents a challenge. We describe a unique case of oral ulceration related to mycophenolate mofetil (MMF) toxicity, 11 years after kidney transplantation, whose dose reduction was sufficient to resolve it. METHODS AND RESULTS A 54-year-old female patient, who underwent kidney transplantation 11 years ago, presents multiple ulcers on the buccal mucosa bilaterally, soft palate and tongue dorsum, for 8 months, with moderate pain. The diagnosis of oral ulcerations associated with MMF therapy was assumed by excluding infection and malignancy diagnosis. After MMF dose reduction, the oral ulcers healed utterly. CONCLUSIONS MMF toxicity manifested as oral ulcers. Reduction or discontinuation of MMF therapy should be considered in a patient with refractory oral ulcers and a negative workup for other causes.
Collapse
Affiliation(s)
- Jefferson R Tenório
- Special Care Dentistry Center, School of Dentistry of the University of São Paulo, São Paulo, Brazil
| | - Marina Tuma
- Special Care Dentistry Center, School of Dentistry of the University of São Paulo, São Paulo, Brazil
| | - Fabiana Martins
- Special Care Dentistry Center, School of Dentistry of the University of São Paulo, São Paulo, Brazil.,Dental School, University of Santo Amaro, São Paulo, Brazil
| | - Karem L Ortega
- Special Care Dentistry Center, School of Dentistry of the University of São Paulo, São Paulo, Brazil
| | - Marina Cristelli
- Department of Nephrologist, Oswaldo Ramos Foundation Kidney Hospital, São Paulo, Brazil
| | - Marina Gallottini
- Special Care Dentistry Center, School of Dentistry of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Rong Y, Kiang TKL. Mechanisms of Metabolism Interaction Between p-Cresol and Mycophenolic Acid. Toxicol Sci 2019; 173:267-279. [DOI: 10.1093/toxsci/kfz231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractMycophenolic acid (MPA) is commonly prescribed for preventing graft rejection after kidney transplantation. The primary metabolic pathways of MPA are hepatic glucuronidation through UDP-glucuronosyltransferase (UGT) enzymes in the formation of MPA-glucuronide (MPAG, major pathway) and MPA-acyl glucuronide (AcMPAG). p-Cresol, a potent uremic toxin known to accumulate in patients with renal dysfunction, can potentially interact with MPA via the inhibition of glucuronidation. We hypothesized that the interaction between MPA and p-cresol is clinically relevant and that the estimated exposure changes in the clinic are of toxicological significance. Using in vitro approaches (ie, human liver microsomes and recombinant enzymes), the potency and mechanisms of inhibition by p-cresol towards MPA glucuronidation were characterized. Inter-individual variabilities, effects of clinical co-variates, in vitro-in vivo prediction of likely changes in MPA exposure, and comparison to other toxins were determined for clinical relevance. p-Cresol inhibited MPAG formation in a potent and competitive manner (Ki=5.2 µM in pooled human liver microsomes) and the interaction was primarily mediated by UGT1A9. This interaction was estimated to increase plasma MPA exposure in patients by approximately 1.8-fold, which may result in MPA toxicity. The mechanism of inhibition for AcMPAG formation was noncompetitive (Ki=127.5 µM) and less likely to be clinically significant. p-Cresol was the most potent inhibitor of MPA-glucuronidation compared with other commonly studied uremic toxins (eg, indole-3-acetic acid, indoxyl sulfate, hippuric acid, kynurenic acid, and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid) and its metabolites (ie, p-cresol sulfate and p-cresol glucuronide). Our findings indicate that the interaction between p-cresol and MPA is of toxicological significance and warrants clinical investigation.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|