Allegaert K, Abbasi MY, Annaert P, Olafuyi O. Current and future physiologically based pharmacokinetic (PBPK) modeling approaches to optimize pharmacotherapy in preterm neonates.
Expert Opin Drug Metab Toxicol 2022;
18:301-312. [PMID:
35796504 DOI:
10.1080/17425255.2022.2099836]
[Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION
There is a need for structured approaches to inform on pharmacotherapy in preterm neonates. With their proven track record up to regulatory acceptance, physiologically based pharmacokinetic (PBPK) modeling and simulation provide such a structured approach, and hold the promise to support drug development in preterm neonates.
AREAS COVERED
Compared to the general and pediatric use of PBPK modeling, its use to inform pharmacotherapy in preterms is limited. Using a systematic search (PBPK + preterm), we retained 25 records (20 research papers, 2 letters, 3 abstracts). We subsequently collated the published information on PBPK software packages (PK-Sim®, Simcyp®), and their applications and optimization efforts in preterm neonates. It is encouraging that these applications cover a broad range of scenarios (pharmacokinetic-dynamic analyses, drug-drug interactions, developmental pharmacogenetics, lactation related exposure) and compounds (small molecules, proteins). Furthermore, specific compartments (cerebrospinal fluid, tissue) or (patho)physiologic processes (cardiac output, biliary excretion, first pass metabolism) are considered.
EXPERT OPINION
Knowledge gaps exist, giving rise to various levels of model uncertainty in PBPK applications in preterm neonates. To improve this setting, we need cross talk between clinicians and modelers to generate and integrate knowledge (PK datasets, system knowledge, maturational physiology and pathophysiology) to further refine PBPK models.
Collapse