1
|
Ponthier L, Autmizguine J, Franck B, Åsberg A, Ovetchkine P, Destere A, Marquet P, Labriffe M, Woillard JB. Optimization of Ganciclovir and Valganciclovir Starting Dose in Children by Machine Learning. Clin Pharmacokinet 2024:10.1007/s40262-024-01362-7. [PMID: 38492206 DOI: 10.1007/s40262-024-01362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND OBJECTIVES Ganciclovir (GCV) and valganciclovir (VGCV) show large interindividual pharmacokinetic variability, particularly in children. The objectives of this study were (1) to develop machine learning (ML) algorithms trained on simulated pharmacokinetics profiles obtained by Monte Carlo simulations to estimate the best ganciclovir or valganciclovir starting dose in children and (2) to compare its performances on real-world profiles to previously published equation derived from literature population pharmacokinetic (POPPK) models achieving about 20% of profiles within the target. MATERIALS AND METHODS The pharmacokinetic parameters of four literature POPPK models in addition to the World Health Organization (WHO) growth curve for children were used in the mrgsolve R package to simulate 10,800 pharmacokinetic profiles. ML algorithms were developed and benchmarked to predict the probability to reach the steady-state, area-under-the-curve target (AUC0-24 within 40-60 mg × h/L) based on demographic characteristics only. The best ML algorithm was then used to calculate the starting dose maximizing the target attainment. Performances were evaluated for ML and literature formula in a test set and in an external set of 32 and 31 actual patients (GCV and VGCV, respectively). RESULTS A combination of Xgboost, neural network, and random forest algorithms yielded the best performances and highest target attainment in the test set (36.8% for GCV and 35.3% for the VGCV). In actual patients, the best GCV ML starting dose yielded the highest target attainment rate (25.8%) and performed equally for VGCV with the Franck model formula (35.3% for both). CONCLUSION The ML algorithms exhibit good performances in comparison with previously validated models and should be evaluated prospectively.
Collapse
Affiliation(s)
- Laure Ponthier
- Pharmacology and Transplantation, INSERM U1248, Université de Limoges, 2 Rue du Pr Descottes, 87000, Limoges, France
- Department of Pediatrics, University Hospital of Limoges, Limoges, France
| | - Julie Autmizguine
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Benedicte Franck
- Department of Clinical and Biological Pharmacology and Pharmacovigilance, Clinical Investigation Center, CIC-P 1414, Rennes, France
- University of Rennes, Centre Hospitalier Universitaire Rennes, École des Hautes Études en Santé Publique, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR S 1085, Rennes, France
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Section of Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Philippe Ovetchkine
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Alexandre Destere
- Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Nice, Nice, France
| | - Pierre Marquet
- Pharmacology and Transplantation, INSERM U1248, Université de Limoges, 2 Rue du Pr Descottes, 87000, Limoges, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, Limoges, France
| | - Marc Labriffe
- Pharmacology and Transplantation, INSERM U1248, Université de Limoges, 2 Rue du Pr Descottes, 87000, Limoges, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, Limoges, France
| | - Jean-Baptiste Woillard
- Pharmacology and Transplantation, INSERM U1248, Université de Limoges, 2 Rue du Pr Descottes, 87000, Limoges, France.
- Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, Limoges, France.
| |
Collapse
|
2
|
Alsultan A, Dasuqi SA, Almohaizeie A, Aljutayli A, Aljamaan F, Omran RA, Alolayan A, Hamad MA, Alotaibi H, Altamimi S, Alghanem SS. External Validation of Obese/Critically Ill Vancomycin Population Pharmacokinetic Models in Critically Ill Patients Who Are Obese. J Clin Pharmacol 2024; 64:353-361. [PMID: 37862131 DOI: 10.1002/jcph.2375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Obesity combined with critical illness might increase the risk of acquiring infections and hence mortality. In this patient population the pharmacokinetics of antimicrobials vary significantly, making antimicrobial dosing challenging. The objective of this study was to assess the predictive performance of published population pharmacokinetic models of vancomycin in patients who are critically ill or obese for a cohort of critically ill patients who are obese. This was a multi-center retrospective study conducted at 2 hospitals. Adult patients with a body mass index of ≥30 kg/m2 were included. PubMed was searched for published population pharmacokinetic studies in patients who were critically ill or obese. External validation was performed using Monolix software. A total of 4 models were identified in patients who were obese and 5 models were identified in patients who were critically ill. In total, 138 patients who were critically ill and obese were included, and the most accurate models for these patients were the Goti and Roberts models. In our analysis, models in patients who were critically ill outperformed models in patients who were obese. When looking at the most accurate models, both the Goti and the Roberts models had patient characteristics similar to ours in terms of age and creatinine clearance. This indicates that when selecting the proper model to apply in practice, it is important to account for all relevant variables, besides obesity.
Collapse
Affiliation(s)
- Abdullah Alsultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shereen A Dasuqi
- Department of Pharmacy, King Khalid University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Abdullah Almohaizeie
- Pharmaceutical Care Division, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdullah Aljutayli
- Department of Pharmaceutics, Faculty of Pharmacy, Qassim University, Riyadh, Saudi Arabia
| | - Fadi Aljamaan
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Critical Care Department, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Rasha A Omran
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Abdulaziz Alolayan
- Pharmacy Department, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
| | - Mohammed A Hamad
- Critical Care Department, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
- Department of Acute Medicine, Wirral University Teaching Hospital NHS Foundation Trust, Arrowe Park Hospital, Wirral, UK
| | - Haifa Alotaibi
- Pharmaceutical Care Division, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sarah Altamimi
- Pharmaceutical Care Division, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sarah S Alghanem
- Department of Pharmacy Practice, College of Pharmacy at Kuwait University, Safat, Kuwait
| |
Collapse
|
3
|
Tang BH, Zhang JY, Allegaert K, Hao GX, Yao BF, Leroux S, Thomson AH, Yu Z, Gao F, Zheng Y, Zhou Y, Capparelli EV, Biran V, Simon N, Meibohm B, Lo YL, Marques R, Peris JE, Lutsar I, Saito J, Jacqz-Aigrain E, van den Anker J, Wu YE, Zhao W. Use of Machine Learning for Dosage Individualization of Vancomycin in Neonates. Clin Pharmacokinet 2023; 62:1105-1116. [PMID: 37300630 DOI: 10.1007/s40262-023-01265-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE High variability in vancomycin exposure in neonates requires advanced individualized dosing regimens. Achieving steady-state trough concentration (C0) and steady-state area-under-curve (AUC0-24) targets is important to optimize treatment. The objective was to evaluate whether machine learning (ML) can be used to predict these treatment targets to calculate optimal individual dosing regimens under intermittent administration conditions. METHODS C0 were retrieved from a large neonatal vancomycin dataset. Individual estimates of AUC0-24 were obtained from Bayesian post hoc estimation. Various ML algorithms were used for model building to C0 and AUC0-24. An external dataset was used for predictive performance evaluation. RESULTS Before starting treatment, C0 can be predicted a priori using the Catboost-based C0-ML model combined with dosing regimen and nine covariates. External validation results showed a 42.5% improvement in prediction accuracy by using the ML model compared with the population pharmacokinetic model. The virtual trial showed that using the ML optimized dose; 80.3% of the virtual neonates achieved the pharmacodynamic target (C0 in the range of 10-20 mg/L), much higher than the international standard dose (37.7-61.5%). Once therapeutic drug monitoring (TDM) measurements (C0) in patients have been obtained, AUC0-24 can be further predicted using the Catboost-based AUC-ML model combined with C0 and nine covariates. External validation results showed that the AUC-ML model can achieve an prediction accuracy of 80.3%. CONCLUSION C0-based and AUC0-24-based ML models were developed accurately and precisely. These can be used for individual dose recommendations of vancomycin in neonates before treatment and dose revision after the first TDM result is obtained, respectively.
Collapse
Affiliation(s)
- Bo-Hao Tang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bu-Fan Yao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Alison H Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ze Yu
- Beijing Medicinovo Technology Co. Ltd., Beijing, China
| | - Fei Gao
- Beijing Medicinovo Technology Co. Ltd., Beijing, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Zhou
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Edmund V Capparelli
- Pediatric Pharmacology and Drug Discovery, University of California, San Diego, CA, USA
| | - Valerie Biran
- Neonatal Intensive Care Unit, Hospital Robert Debre, Paris, France
| | - Nicolas Simon
- Service de Pharmacologie Clinique, CAP-TV, Aix Marseille Univ, APHM, INSERM, IRD, SESSTIM, Hop Sainte Marguerite, Marseille, France
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yoke-Lin Lo
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Remedios Marques
- Department of Pharmacy Services, La Fe Hospital, Valencia, Spain
| | - Jose-Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | - Irja Lutsar
- Institute of Medical Microbiology, University of Tartu, Tartu, Estonia
| | - Jumpei Saito
- Department of Pharmacy, National Children's Hospital National Center for Child Health and Development, Tokyo, Japan
| | - Evelyne Jacqz-Aigrain
- Department of Pediatric Pharmacology and Pharmacogenetics, Hospital Robert Debre, APHP, Paris, France
- Clinical Investigation Center CIC1426, Hôpital Robert Debré, Paris, France
- University Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Khalid K, Rox K. All Roads Lead to Rome: Enhancing the Probability of Target Attainment with Different Pharmacokinetic/Pharmacodynamic Modelling Approaches. Antibiotics (Basel) 2023; 12:antibiotics12040690. [PMID: 37107052 PMCID: PMC10135278 DOI: 10.3390/antibiotics12040690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
In light of rising antimicrobial resistance and a decreasing number of antibiotics with novel modes of action, it is of utmost importance to accelerate development of novel treatment options. One aspect of acceleration is to understand pharmacokinetics (PK) and pharmacodynamics (PD) of drugs and to assess the probability of target attainment (PTA). Several in vitro and in vivo methods are deployed to determine these parameters, such as time-kill-curves, hollow-fiber infection models or animal models. However, to date the use of in silico methods to predict PK/PD and PTA is increasing. Since there is not just one way to perform the in silico analysis, we embarked on reviewing for which indications and how PK and PK/PD models as well as PTA analysis has been used to contribute to the understanding of the PK and PD of a drug. Therefore, we examined four recent examples in more detail, namely ceftazidime-avibactam, omadacycline, gepotidacin and zoliflodacin as well as cefiderocol. Whereas the first two compound classes mainly relied on the ‘classical’ development path and PK/PD was only deployed after approval, cefiderocol highly profited from in silico techniques that led to its approval. Finally, this review shall highlight current developments and possibilities to accelerate drug development, especially for anti-infectives.
Collapse
Affiliation(s)
- Kashaf Khalid
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|