1
|
Tyrakis P, Agridi C, Kourti M. A Comprehensive Exploration of the Multifaceted Neuroprotective Role of Cannabinoids in Alzheimer's Disease across a Decade of Research. Int J Mol Sci 2024; 25:8630. [PMID: 39201317 PMCID: PMC11354546 DOI: 10.3390/ijms25168630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, manifests through dysregulation of brain function and subsequent loss of bodily control, attributed to β-amyloid plaque deposition and TAU protein hyperphosphorylation and aggregation, leading to neuronal death. Concurrently, similar cannabinoids to the ones derived from Cannabis sativa are present in the endocannabinoid system, acting through receptors CB1R and CB2R and other related receptors such as Trpv-1 and GPR-55, and are being extensively investigated for AD therapy. Given the limited efficacy and adverse effects of current available treatments, alternative approaches are crucial. Therefore, this review aims to identify effective natural and synthetic cannabinoids and elucidate their beneficial actions for AD treatment. PubMed and Scopus databases were queried (2014-2024) using keywords such as "Alzheimer's disease" and "cannabinoids". The majority of natural (Δ9-THC, CBD, AEA, etc.) and synthetic (JWH-133, WIN55,212-2, CP55-940, etc.) cannabinoids included showed promise in improving memory, cognition, and behavioral symptoms, potentially via pathways involving antioxidant effects of selective CB1R agonists (such as the BDNF/TrkB/Akt pathway) and immunomodulatory effects of selective CB2R agonists (TLR4/NF-κB p65 pathway). Combining anticholinesterase properties with a cannabinoid moiety may enhance therapeutic responses, addressing cholinergic deficits of AD brains. Thus, the positive outcomes of the vast majority of studies discussed support further advancing cannabinoids in clinical trials for AD treatment.
Collapse
Affiliation(s)
| | | | - Malamati Kourti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus; (P.T.); (C.A.)
| |
Collapse
|
2
|
Nuñez-Borque E, González-Naranjo P, Bartolomé F, Alquézar C, Reinares-Sebastián A, Pérez C, Ceballos ML, Páez JA, Campillo NE, Martín-Requero Á. Targeting Cannabinoid Receptor Activation and BACE-1 Activity Counteracts TgAPP Mice Memory Impairment and Alzheimer's Disease Lymphoblast Alterations. Mol Neurobiol 2020; 57:1938-1951. [PMID: 31898159 DOI: 10.1007/s12035-019-01813-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD), the leading cause of dementia in the elderly, is a neurodegenerative disorder marked by progressive impairment of cognitive ability. Patients with AD display neuropathological lesions including senile plaques, neurofibrillary tangles, and neuronal loss. There are no disease-modifying drugs currently available. With the number of affected individuals increasing dramatically throughout the world, there is obvious urgent need for effective treatment strategy for AD. The multifactorial nature of AD encouraged the development of multifunctional compounds, able to interact with several putative targets. Here, we have evaluated the effects of two in-house designed cannabinoid receptors (CB) agonists showing inhibitory actions on β-secretase-1 (BACE-1) (NP137) and BACE-1/butyrylcholinesterase (BuChE) (NP148), on cellular models of AD, including immortalized lymphocytes from late-onset AD patients. Furthermore, the performance of TgAPP mice in a spatial navigation task was investigated following chronic administration of NP137 and NP148. We report here that NP137 and NP148 showed neuroprotective effects in amyloid-β-treated primary cortical neurons, and NP137 in particular rescued the cognitive deficit of TgAPP mice. The latter compound was able to blunt the abnormal cell response to serum addition or withdrawal of lymphoblasts derived from AD patients. It is suggested that NP137 could be a good drug candidate for future treatment of AD.
Collapse
Affiliation(s)
- Emilio Nuñez-Borque
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | - Fernando Bartolomé
- Neurodegenerative Disorders Group, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carolina Alquézar
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Department of Neurology, Memory and Aging Center, University of California, Box 1207, San Francisco, CA, 94158, USA
| | | | | | - Maria L Ceballos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Insituto Cajal (CSIC), Madrid, Spain
| | - Juan A Páez
- Instituto de Química Médica (CSIC), Madrid, Spain
| | - Nuria E Campillo
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Ángeles Martín-Requero
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
3
|
Cosín-Tomàs M, Senserrich J, Arumí-Planas M, Alquézar C, Pallàs M, Martín-Requero Á, Suñol C, Kaliman P, Sanfeliu C. Role of Resveratrol and Selenium on Oxidative Stress and Expression of Antioxidant and Anti-Aging Genes in Immortalized Lymphocytes from Alzheimer's Disease Patients. Nutrients 2019; 11:E1764. [PMID: 31370365 PMCID: PMC6723840 DOI: 10.3390/nu11081764] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 12/29/2022] Open
Abstract
Oxidative damage is involved in the pathophysiology of age-related ailments, including Alzheimer's disease (AD). Studies have shown that the brain tissue and also lymphocytes from AD patients present increased oxidative stress compared to healthy controls (HCs). Here, we use lymphoblastoid cell lines (LCLs) from AD patients and HCs to investigate the role of resveratrol (RV) and selenium (Se) in the reduction of reactive oxygen species (ROS) generated after an oxidative injury. We also studied whether these compounds elicited expression changes in genes involved in the antioxidant cell response and other aging-related mechanisms. AD LCLs showed higher ROS levels than those from HCs in response to H2O2 and FeSO4 oxidative insults. RV triggered a protective response against ROS under control and oxidizing conditions, whereas Se exerted antioxidant effects only in AD LCLs under oxidizing conditions. RV increased the expression of genes encoding known antioxidants (catalase, copper chaperone for superoxide dismutase 1, glutathione S-transferase zeta 1) and anti-aging factors (sirtuin 1 and sirtuin 3) in both AD and HC LCLs. Our findings support RV as a candidate for inducing resilience and protection against AD, and reinforce the value of LCLs as a feasible peripheral cell model for understanding the protective mechanisms of nutraceuticals against oxidative stress in aging and AD.
Collapse
Affiliation(s)
- Marta Cosín-Tomàs
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
- Department of Human Genetics, Research Institute of the McGill University Health Centre, Montreal, QC H3A 0C7, Canada
| | - Júlia Senserrich
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
| | - Marta Arumí-Planas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
| | - Carolina Alquézar
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Mercè Pallàs
- Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Ángeles Martín-Requero
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Cristina Suñol
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Perla Kaliman
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
- Faculty of Health Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain.
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28031 Madrid, Spain.
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
4
|
Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH. BACE1 inhibitors: Current status and future directions in treating Alzheimer's disease. Med Res Rev 2019; 40:339-384. [PMID: 31347728 DOI: 10.1002/med.21622] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder with no current cure. One of the important therapeutic approaches of AD is the inhibition of β-site APP cleaving enzyme-1 (BACE1), which is involved in the rate-limiting step of the cleavage process of the amyloid precursor protein (APP) leading to the generation of the neurotoxic amyloid β (Aβ) protein after the γ-secretase completes its function. The produced insoluble Aβ aggregates lead to plaques deposition and neurodegeneration. BACE1 is, therefore, one of the attractive targets for the treatment of AD. This approach led to the development of potent BACE1 inhibitors, many of which were advanced to late stages in clinical trials. Nonetheless, the high failure rate of lead drug candidates targeting BACE1 brought to the forefront the need for finding new targets to uncover the mystery behind AD. In this review, we aim to discuss the most promising classes of BACE1 inhibitors with a description and analysis of their pharmacodynamic and pharmacokinetic parameters, with more focus on the lead drug candidates that reached late stages of clinical trials, such as MK8931, AZD-3293, JNJ-54861911, E2609, and CNP520. In addition, the manuscript discusses the safety concerns and insignificant physiological effects, which were highlighted for the most successful BACE1 inhibitors. Furthermore, the review demonstrates with increasing evidence that despite tremendous efforts and promising results conceived with BACE1 inhibitors, the latest studies suggest that their clinical use for treating Alzheimer's disease should be reconsidered. Finally, the review sheds light on alternative therapeutic options for targeting AD.
Collapse
Affiliation(s)
- Nour M Moussa-Pacha
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shifaa M Abdin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hasan Alniss
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
González-Naranjo P, Pérez-Macias N, Pérez C, Roca C, Vaca G, Girón R, Sánchez-Robles E, Martín-Fontelles MI, de Ceballos ML, Martin-Requero A, Campillo NE, Páez JA. Indazolylketones as new multitarget cannabinoid drugs. Eur J Med Chem 2019; 166:90-107. [PMID: 30685536 DOI: 10.1016/j.ejmech.2019.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/03/2019] [Accepted: 01/13/2019] [Indexed: 02/02/2023]
Abstract
Multitarget cannabinoids could be a promising therapeutic strategic to fight against Alzheimer's disease. In this sense, our group has developed a new family of indazolylketones with multitarget profile including cannabinoids, cholinesterase and BACE-1 activity. A medicinal chemistry program that includes computational design, synthesis and in vitro and cellular evaluation has allowed to us to achieve lead compounds. In this work, the synthesis and evaluation of a new class of indazolylketones have been performed. Pharmacological evaluation includes functional activity for cannabinoid receptors on isolated tissue. In addition, in vitro inhibitory assays in AChE/BuChE enzymes and BACE-1 have been carried out. Furthermore, studies of neuroprotective effects in human neuroblastoma SH-SY5Y cells and studies of the mechanisms of survival/death in lymphoblasts of patients with Alzheimer's disease have been achieved. The results of pharmacological tests have revealed that some of these derivatives (5, 6) behave as CB2 cannabinoid agonists and simultaneously show BuChE and/or BACE-1 inhibition.
Collapse
Affiliation(s)
| | | | - Concepción Pérez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Carlos Roca
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maéztu 9, 28040, Madrid, Spain
| | - Gabriela Vaca
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maéztu 9, 28040, Madrid, Spain
| | - Rocio Girón
- Área de Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, Avda. Atenas s/n, 28922, Alcorcón, Grupo de investigación i+DOL URJC-Santander Universidades, Spain
| | - Eva Sánchez-Robles
- Área de Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, Avda. Atenas s/n, 28922, Alcorcón, Grupo de investigación i+DOL URJC-Santander Universidades, Spain
| | - María Isabel Martín-Fontelles
- Área de Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, Avda. Atenas s/n, 28922, Alcorcón, Grupo de investigación i+DOL URJC-Santander Universidades, Spain
| | | | | | - Nuria E Campillo
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maéztu 9, 28040, Madrid, Spain
| | - Juan A Páez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|