1
|
Segal A, Smith RE, Chopra S, Oldham S, Parkes L, Aquino K, Kia SM, Wolfers T, Franke B, Hoogman M, Beckmann CF, Westlye LT, Andreassen OA, Zalesky A, Harrison BJ, Davey CG, Soriano-Mas C, Cardoner N, Tiego J, Yücel M, Braganza L, Suo C, Berk M, Cotton S, Bellgrove MA, Marquand AF, Fornito A. Multiscale heterogeneity of white matter morphometry in psychiatric disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00127-2. [PMID: 40204235 DOI: 10.1016/j.bpsc.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/12/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Inter-individual variability in the neurobiological and clinical characteristics of mental illnesses are often overlooked by classical group-mean case-control studies. Studies using normative modelling to infer person-specific deviations of grey matter volume have indicated that group means are not representative of most individuals. The extent to which this variability is present in white matter morphometry, which is integral to brain function, remains unclear. METHODS We applied Warped Bayesian Linear Regression normative models to T1-weighted magnetic resonance imaging data and mapped inter-individual variability in person-specific white matter volume deviations in 1,294 cases (58% male) diagnosed with one of six disorders (attention-deficit/hyperactivity, autism, bipolar, major depressive, obsessive-compulsive and schizophrenia) and 1,465 matched controls (54% male) recruited across 25 scan sites. We developed a framework to characterize deviation heterogeneity at multiple spatial scales, from individual voxels, through inter-regional connections, specific brain regions, and spatially extended brain networks. RESULTS The specific locations of white matter volume deviations were highly heterogeneous across participants, affecting the same voxel in fewer than 8% of individuals with the same diagnosis. For autism and schizophrenia, negative deviations (i.e., areas where volume is lower than normative expectations) aggregated into common tracts, regions, and large-scale networks in up to 69% of individuals. CONCLUSIONS The prevalence of white matter volume deviations was lower than previously observed in grey matter, and the specific location of these deviations was highly heterogeneous when considering voxel-wise spatial resolution. Evidence of aggregation within common pathways and networks was apparent in schizophrenia and autism, but not other disorders.
Collapse
Affiliation(s)
- Ashlea Segal
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia; Wu Tsai Institute, Department of Neuroscience, Yale University, New Haven, United States.
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Stuart Oldham
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Seyed Mostafa Kia
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cognitive Science and Artificial Intelligence, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, the Netherlands
| | - Thomas Wolfers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo & Oslo University Hospital, Oslo, Norway; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TÜCMH), University of Tübingen, Tübingen, Germany
| | - Barbara Franke
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands; Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo & Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia; Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Ben J Harrison
- Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | | | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital. Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona-UB, Barcelona, Spain
| | - Narcís Cardoner
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Murat Yücel
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leah Braganza
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia; Australian Characterisation Commons at Scale (ACCS) Project, Monash eResearch Centre, Melbourne, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Melbourne, Australia; Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, Australia
| | - Sue Cotton
- Orygen, Melbourne, Australia; Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Andre F Marquand
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Neuroimaging, Centre of Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, The United Kingdom
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Chan JKN, Wong CSM, Fang CZ, Hung SC, Lo HKY, Chang WC. Mortality risk and mood stabilizers in bipolar disorder: a propensity-score-weighted population-based cohort study in 2002-2018. Epidemiol Psychiatr Sci 2024; 33:e31. [PMID: 38779809 PMCID: PMC11362685 DOI: 10.1017/s2045796024000337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
AIMS Accumulating studies have assessed mortality risk associated with mood-stabilizers, the mainstay treatment for bipolar disorder (BD). However, existing data were mostly restricted to suicide risk, focused on lithium and valproate and rarely adequately adjusted for potential confounders. This study aimed to assess comparative mortality risk with all, natural and unnatural causes between lithium, valproate and three frequently prescribed second-generation antipsychotics (SGA), with adjustment for important confounders. METHODS This population-based cohort study identified 8137 patients with first-diagnosed BD, who had exposed to lithium (n = 1028), valproate (n = 3580), olanzapine (n = 797), quetiapine (n = 1975) or risperidone (n = 757) between 2002 and 2018. Data were retrieved from territory-wide medical-record database of public healthcare services in Hong Kong. Propensity-score (PS)-weighting method was applied to optimize control for potential confounders including pre-existing chronic physical diseases, substance/alcohol use disorders and other psychotropic medications. PS-weighted Cox proportional-hazards regression was conducted to assess risk of all-, natural- and unnatural-cause mortality related to each mood-stabilizer, compared to lithium. Three sets of sensitivity analyses were conducted by restricting to patients with (i) length of cumulative exposure to specified mood-stabilizer ≥90 days and its medication possession ratio (MPR) ≥90%, (ii) MPR of specified mood-stabilizer ≥80% and MPR of other studied mood-stabilizers <20% and (iii) monotherapy. RESULTS Incidence rates of all-cause mortality per 1000 person-years were 5.9 (95% confidence interval [CI]: 4.5-7.6), 8.4 (7.4-9.5), 11.1 (8.3-14.9), 7.4 (6.0-9.2) and 12.0 (9.3-15.6) for lithium-, valproate-, olanzapine-, quetiapine- and risperidone-treated groups, respectively. BD patients treated with olanzapine (PS-weighted hazard ratio = 2.07 [95% CI: 1.33-3.22]) and risperidone (1.66 [1.08-2.55]) had significantly higher all-cause mortality rate than lithium-treated group. Olanzapine was associated with increased risk of natural-cause mortality (3.04 [1.54-6.00]) and risperidone was related to elevated risk of unnatural-cause mortality (3.33 [1.62-6.86]), relative to lithium. The association between olanzapine and increased natural-cause mortality rate was consistently affirmed in sensitivity analyses. Relationship between risperidone and elevated unnatural-cause mortality became non-significant in sensitivity analyses restricted to low MPR in other mood-stabilizers and monotherapy. Valproate- and lithium-treated groups did not show significant differences in all-, natural- or unnatural-cause mortality risk. CONCLUSION Our data showed that olanzapine and risperidone were associated with higher mortality risk than lithium, and further supported the clinical guidelines recommending lithium as the first-line mood-stabilizer for BD. Future research is required to further clarify comparative mortality risk associated with individual SGA agents to facilitate risk-benefit evaluation of alternative mood-stabilizers to minimize avoidable premature mortality in BD.
Collapse
Affiliation(s)
- Joe Kwun Nam Chan
- Department of Psychiatry, School of Clinical medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Corine Sau Man Wong
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Catherine Zhiqian Fang
- Department of Psychiatry, School of Clinical medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Samson Chun Hung
- Department of Psychiatry, School of Clinical medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Heidi Ka Ying Lo
- Department of Psychiatry, School of Clinical medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wing Chung Chang
- Department of Psychiatry, School of Clinical medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, Hong Kong
| |
Collapse
|