1
|
Candan B, Gungor S. Current and Evolving Concepts in the Management of Complex Regional Pain Syndrome: A Narrative Review. Diagnostics (Basel) 2025; 15:353. [PMID: 39941283 PMCID: PMC11817358 DOI: 10.3390/diagnostics15030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Complex regional pain syndrome (CRPS) is characterized by severe pain and reduced functionality, which can significantly affect an individual's quality of life. The current treatment of CRPS is challenging. However, recent advances in diagnostic and treatment methods show promise for improving patient outcomes. This review aims to place the question of CRPS in a broader context and highlight the objectives of the research for future directions in the management of CRPS. Methods: This study involved a comprehensive literature review. Results: Research has identified three primary pathophysiological pathways that may explain the clinical variability observed in CRPS: inflammatory mechanisms, vasomotor dysfunction, and maladaptive neuroplasticity. Investigations into these pathways have spurred the development of novel diagnostic and treatment strategies focused on N-Methyl-D-aspartate Receptor Antagonists (NMDA), Toll-like receptor 4 (TLR-4), α1 and α2 adrenoreceptors, as well as the identification of microRNA (miRNA) biomarkers. Treatment methods being explored include immune and glial-modulating agents, intravenous immunoglobulin (IVIG) therapy, plasma exchange therapy, and neuromodulation techniques. Additionally, there is ongoing debate regarding the efficacy of other treatments, such as free radical scavengers, alpha-lipoic acid (ALA), dimethyl fumarate (DMF), adenosine monophosphate-activated protein kinase (AMPK) activators such as metformin, and phosphodiesterase-5 inhibitors such as tadalafil. Conclusions: The controversies surrounding the mechanisms, diagnosis, and treatment of CRPS have prompted researchers to investigate new approaches aimed at enhancing understanding and management of the condition, with the goal of alleviating symptoms and reducing associated disabilities.
Collapse
Affiliation(s)
- Burcu Candan
- Department of Anesthesiology and Reanimation, Bahçeşehir University Göztepe Medical Park Hospital, 34732 Istanbul, Türkiye
| | - Semih Gungor
- Division of Musculoskeletal and Interventional Pain Management, Department of Anesthesiology, Critical Care and Pain Management, Hospital for Special Surgery, New York, NY 10021, USA;
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
2
|
Song H, Luo Y, Fang L. Esketamine Nasal Spray: Rapid Relief for TRD and Suicide Prevention-Mechanisms and Pharmacodynamics. Neuropsychiatr Dis Treat 2024; 20:2059-2071. [PMID: 39502383 PMCID: PMC11536986 DOI: 10.2147/ndt.s486118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Esketamine nasal spray has emerged as a promising rapid-relief therapy for treatment-resistant depression (TRD) and suicide prevention. This review examines the chemical structure and pharmacodynamics of esketamine, highlighting its primary action on NMDA receptors and additional effects on AMPA receptors, opioid receptors, monoaminergic receptors, and inflammatory pathways. Despite the synergistic mechanisms contributing to its clinical benefits not being fully understood, future studies are essential to refine our understanding and optimize clinical use. Clinical research indicates that esketamine effectively alleviates depressive symptoms and prevents suicidal behavior in TRD patients, demonstrating good safety and efficacy over extended periods. Specifically, multiple randomized controlled trials have shown that esketamine reduces depressive symptoms within hours and maintains these benefits over several weeks, with a favorable safety profile and minimal side effects observed in long-term use. The approval of esketamine for TRD has significant implications for healthcare practices and policies, offering a new therapeutic option that addresses the urgent needs of patients with severe depression.
Collapse
Affiliation(s)
- Hui Song
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, People’s Republic of China
| | - Yang Luo
- Jiang You Third People Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Lingzhi Fang
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, People’s Republic of China
| |
Collapse
|
3
|
Di Vincenzo M, Martiadis V, Della Rocca B, Arsenio E, D’Arpa A, Volpicelli A, Luciano M, Sampogna G, Fiorillo A. Facts and myths about use of esketamine for treatment-resistant depression: a narrative clinical review. Front Psychiatry 2024; 15:1394787. [PMID: 38812489 PMCID: PMC11133709 DOI: 10.3389/fpsyt.2024.1394787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction and aims Treatment-resistant depression (TRD) occurs when at least two different antidepressants, taken at the right dosage, for adequate period of time and with continuity, fail to give positive clinical effects. Esketamine, the S-enantiomer of ketamine, was recently approved for TRD treatment from U.S. Food and Drug Administration and European Medicine Agency. Despite proved clinical efficacy, many misconceptions by clinicians and patients accompany this medication. We aimed to review the most common "false myths" regarding TRD and esketemine, counterarguing with evidence-based facts. Methods The keywords "esketamine", "treatment resistance depression", "depression", "myth", "mythology", "pharmacological treatment", and "misunderstanding" were entered in the main databases and combined through Boolean operators. Results Misconceptions regarding the TRD prevalence, clinical features and predictors have been found. With respect of esketamine, criteria to start treatment, dissociative symptoms, potential addiction and aspects of administration and monitoring, were found to be affected by false beliefs by clinicians and patients. Discussion and conclusion TRD represents a challenging condition, requiring precise diagnosis in order to achieve patient's full recovery. Esketamine has been proved as an effective medication to treat TRD, although it requires precautions. Evidence can inform clinical practice, in order to offer this innovative treatment to all patients with TRD.
Collapse
Affiliation(s)
- Matteo Di Vincenzo
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Vassilis Martiadis
- Department of Mental Health, Community Mental Health Center DS 25, Azienda Sanitaria Locale Napoli 1 Centro, Naples, Italy
| | - Bianca Della Rocca
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Eleonora Arsenio
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Andrea D’Arpa
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Antonio Volpicelli
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Mario Luciano
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Gaia Sampogna
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Andrea Fiorillo
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
4
|
Moein ST, Sacan A, Pourrezaei K, Yan CH, Turner JH, Sharetts R, Doty RL. Development of parallel forms of a brief smell identification test useful for longitudinal testing. Behav Res Methods 2024; 56:1449-1458. [PMID: 36964286 PMCID: PMC10038376 DOI: 10.3758/s13428-023-02102-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/26/2023]
Abstract
Although there are numerous brief odor identification tests available for quantifying the ability to smell, none are available in multiple parallel forms that can be longitudinally administered without potential confounding from knowledge of prior test items. Moreover, empirical algorithms for establishing optimal test lengths have not been generally applied. In this study, we employed and compared eight machine learning algorithms to develop a set of four brief parallel smell tests employing items from the University of Pennsylvania Smell Identification Test that optimally differentiated 100 COVID-19 patients from 132 healthy controls. Among the algorithms, linear discriminant analysis (LDA) achieved the best overall performance. The minimum number of odorant test items needed to differentiate smell loss accurately was identified as eight. We validated the sensitivity of the four developed tests, whose means and variances did not differ from one another (Bradley-Blackwood test), by sequential testing an independent group of 32 subjects that included persons with smell dysfunction not due to COVID-19. These eight-item tests clearly differentiated the olfactory compromised subjects from normosmics, with areas under the ROC curve ranging from 0.79 to 0.83. Each test was correlated with the overall UPSIT scores from which they were derived. These brief smell tests can be used separately or sequentially over multiple days in a variety of contexts where longitudinal olfactory testing is needed.
Collapse
Affiliation(s)
- Shima T Moein
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, Smell & Taste Center, University of Pennsylvania, Philadelphia, PA, USA.
- Research & Development Division, Sensonics International, 411 S Black Horse Pike, Haddon Heights, NJ, 08035, USA.
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA, USA
| | - Kambiz Pourrezaei
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA, USA
| | - Carol H Yan
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, San Diego, CA, USA
| | - Justin H Turner
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan Sharetts
- Research & Development Division, Sensonics International, 411 S Black Horse Pike, Haddon Heights, NJ, 08035, USA
| | - Richard L Doty
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, Smell & Taste Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Fu DJ, Bossie CA, Lane R, Janik A, Canuso CM, Drevets WC. Comments to Drs Taillefer de Laportalière, Jullien, Yrondi, Cestac, and Montastruc. Psychol Med 2023; 53:7980-7982. [PMID: 37609792 PMCID: PMC10755219 DOI: 10.1017/s0033291723002490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Affiliation(s)
- Dong-Jing Fu
- Department of Neuroscience Clinical Development, Janssen Research & Development, LLC, Titusville, NJ, USA
| | - Cynthia A. Bossie
- Department of Neuroscience Clinical Development, Janssen Research & Development, LLC, Titusville, NJ, USA
| | - Rosanne Lane
- Department of Clinical Statistics, Janssen Research & Development, LLC, Titusville, NJ, USA
| | - Adam Janik
- Department of Neuroscience Clinical Development, Janssen Research & Development, LLC, San Diego, CA, USA
| | - Carla M. Canuso
- Department of Neuroscience Clinical Development, Janssen Research & Development, LLC, Titusville, NJ, USA
| | - Wayne C. Drevets
- Department of Neuroscience Clinical Development, Janssen Research & Development, LLC, San Diego, CA, USA
| |
Collapse
|
6
|
Wydra K, Witek K, Suder A, Filip M. Esketamine Inhibits Cocaine-Seeking Behaviour Subsequent to Various Abstinence Conditions in Rats. Biomolecules 2023; 13:1411. [PMID: 37759811 PMCID: PMC10527312 DOI: 10.3390/biom13091411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Cocaine use disorder (CUD) is a relapsing brain disease caused by a chronic drug intake that involves neural mechanisms and psychological processes, including depression. Preclinical and clinical studies have demonstrated the promise of pharmacological drugs in controlling the reinstatement of cocaine by targeting the N-methyl-D-aspartate (NMDA) receptor. Recent evidence has revealed that esketamine, a (S) enantiomer of ketamine, shows a high affinity to NMDA receptors and has been used in clinical trials to treat moderate-to-severe depression. METHODS In the present paper, we investigated the effects of esketamine in regulating cocaine-seeking behaviour induced through the use of cocaine (10 mg/kg) or the cocaine-associated conditioned cue after a short (10 days)-lasting period of drug abstinence with extinction training, home cage or enrichment environment conditions in male rats. Furthermore, we investigated the acute effects of esketamine on locomotor activity in drug-naïve animals. RESULTS Esketamine (2.5-10 mg/kg) administered peripherally attenuated the reinstatement induced with cocaine priming or the drug-associated conditioned cue after different conditions of abstinence. CONCLUSIONS These results seem to support esketamine as a candidate for the pharmacological management of cocaine-seeking and relapse prevention; however, further preclinical and clinical research is needed to better clarify esketamine's actions in CUD.
Collapse
Affiliation(s)
- Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, PL-31-343 Kraków, Poland; (K.W.); (A.S.)
| | | | | | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, PL-31-343 Kraków, Poland; (K.W.); (A.S.)
| |
Collapse
|
7
|
Intranasal Polymeric and Lipid-Based Nanocarriers for CNS Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15030746. [PMID: 36986607 PMCID: PMC10051709 DOI: 10.3390/pharmaceutics15030746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Nanomedicine is currently focused on the design and development of nanocarriers that enhance drug delivery to the brain to address unmet clinical needs for treating neuropsychiatric disorders and neurological diseases. Polymer and lipid-based drug carriers are advantageous for delivery to the central nervous system (CNS) due to their safety profiles, drug-loading capacity, and controlled-release properties. Polymer and lipid-based nanoparticles (NPs) are reported to penetrate the blood–brain barrier (BBB) and have been extensively assessed in in vitro and animal models of glioblastoma, epilepsy, and neurodegenerative disease. Since approval by the Food and Drug Administration (FDA) of intranasal esketamine for treatment of major depressive disorder, intranasal administration has emerged as an attractive route to bypass the BBB for drug delivery to the CNS. NPs can be specifically designed for intranasal administration by tailoring their size and coating with mucoadhesive agents or other moieties that promote transport across the nasal mucosa. In this review, unique characteristics of polymeric and lipid-based nanocarriers desirable for drug delivery to the brain are explored in addition to their potential for drug repurposing for the treatment of CNS disorders. Progress in intranasal drug delivery using polymeric and lipid-based nanostructures for the development of treatments of various neurological diseases are also described.
Collapse
|
8
|
Leon M, Woo CC. Olfactory loss is a predisposing factor for depression, while olfactory enrichment is an effective treatment for depression. Front Neurosci 2022; 16:1013363. [PMID: 36248633 PMCID: PMC9558899 DOI: 10.3389/fnins.2022.1013363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The loss of olfactory stimulation correlates well with at least 68 widely differing neurological disorders, including depression, and we raise the possibility that this relationship may be causal. That is, it seems possible that olfactory loss makes the brain vulnerable to expressing the symptoms of these neurological disorders, while daily olfactory enrichment may decrease the risk of expressing these symptoms. This situation resembles the cognitive reserve that is thought to protect people with Alzheimer’s neuropathology from expressing the functional deficit in memory through the cumulative effect of intellectual stimulation. These relationships also resemble the functional response of animal models of human neurological disorders to environmental enrichment, wherein the animals continue to have the induced neuropathology, but do not express the symptoms as they do in a standard environment with restricted sensorimotor stimulation.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Michael Leon,
| | - Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
Zhang X, Zhang N, Liu D, Ding J, Zhang Y, Zhu Z. Research advances in the clinical application of esketamine. IBRAIN 2022; 8:55-67. [PMID: 37786420 PMCID: PMC10528803 DOI: 10.1002/ibra.12019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 10/04/2023]
Abstract
Esketamine is dextrorotatory ketamine, which is an enantiomer of ketamine. Compared with ketamine, it has the advantages of a fast metabolism, fewer side effects, and strong pharmacological effects, so it is more suitable for clinical use. Esketamine has a powerful analgesic effect and has little effect on breathing. It has a wide range of applications in the fields of pediatric anesthesia, conscious sedation anesthesia, and emergency analgesia. In addition, it is also used for pain that is difficult to relieve with conventional drugs and to prevent postoperative pain. Various routes of administration are also suitable for patients who need short-term analgesia and sedation. As a drug, esketamine inevitably brings some side effects when it is used clinically. In this article, by introducing the mechanism of action and pharmacological characteristics of esketamine, its clinical application is reviewed, and it provides a reference for the more reasonable and safe clinical application of esketamine.
Collapse
Affiliation(s)
- Xiao‐Xi Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Nai‐Xin Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - De‐Xing Liu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jun Ding
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yi‐Nan Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
10
|
Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs 2022; 36:739-770. [PMID: 35759210 PMCID: PMC9243954 DOI: 10.1007/s40263-022-00930-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
While the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.
Collapse
|
11
|
Kojic M, Saelens J, Kadriu B, Zarate CA, Kraus C. Ketamine for Depression: Advances in Clinical Treatment, Rapid Antidepressant Mechanisms of Action, and a Contrast with Serotonergic Psychedelics. Curr Top Behav Neurosci 2022; 56:141-167. [PMID: 35312993 PMCID: PMC10500612 DOI: 10.1007/7854_2022_313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The approval of ketamine for treatment-resistant depression has created a model for a novel class of rapid-acting glutamatergic antidepressants. Recent research into other novel rapid-acting antidepressants - most notably serotonergic psychedelics (SPs) - has also proven promising. Presently, the mechanisms of action of these substances are under investigation to improve these novel treatments, which also exhibit considerable side effects such as dissociation. This chapter lays out the historical development of ketamine as an antidepressant, outlines its efficacy and safety profile, reviews the evidence for ketamine's molecular mechanism of action, and compares it to the proposed mechanism of SPs. The evidence suggests that although ketamine and SPs act on distinct primary targets, both may lead to rapid restoration of synaptic deficits and downstream network reconfiguration. In both classes of drugs, a glutamate surge activates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) throughput and increases in brain-derived neurotrophic factor (BDNF) levels. Taken together, these novel antidepressant mechanisms may serve as a framework to explain the rapid and sustained antidepressant effects of ketamine and may be crucial for developing new rapid-acting antidepressants with an improved side effect profile.
Collapse
Affiliation(s)
- Marina Kojic
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Johan Saelens
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Bashkim Kadriu
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Janssen Research & Development, LLC, San Diego, CA, USA
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Kowalczyk M, Kowalczyk E, Kwiatkowski P, Łopusiewicz Ł, Sienkiewicz M, Talarowska M. Ketamine-New Possibilities in the Treatment of Depression: A Narrative Review. Life (Basel) 2021; 11:1186. [PMID: 34833062 PMCID: PMC8619908 DOI: 10.3390/life11111186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 coronavirus epidemic has led to an increase in the number of people with depression. Symptoms related to the mental sphere (mainly depression and anxiety) may be experienced by one third of the worldwide population. This entails the need for the effective and rapid treatment of depressive episodes. An effective drug seems to be s-ketamine, which was accepted in March 2019 by the Food and Drug Administration (FDA) for the treatment of drug-resistant depression. This drug provides a quick antidepressant effect with maximum effectiveness achieved after 24 h. It also appears to reduce the occurrence of suicidal thoughts. However, research into undesirable effects, especially in groups of people susceptible to psychotic episodes or those who use alcohol or psychoactive substances, is necessary.
Collapse
Affiliation(s)
- Mateusz Kowalczyk
- Babinski Memorial Hospital, Aleksandrowska St. 159, 91-229 Lodz, Poland;
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego St. 7/9, 90-752 Lodz, Poland;
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland;
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszyńskiego St. 1, 90-151 Lodz, Poland
| | - Monika Talarowska
- Department of Clinical Psychology and Psychopathology, Institute of Psychology, University of Lodz, Smugowa St. 10/12, 91-433 Lodz, Poland;
| |
Collapse
|