1
|
Mengi G, Aydoğmuş H, Özyemişçi Taşkıran Ö, Göğüş F, Beyazova M. Is it possible to objectively determine morning stiffness in rheumatoid arthritis? Turk J Phys Med Rehabil 2024; 70:180-187. [PMID: 38948637 PMCID: PMC11209333 DOI: 10.5606/tftrd.2024.12219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/07/2023] [Indexed: 07/02/2024] Open
Abstract
Objectives This study aimed to objectively and quantitatively exhibit morning stiffness by using electrophysiological methods. Patients and methods The prospective, controlled study was conducted with 52 participants between February 2013 and February 2014. Of the participants, 26 were recruited among RA patients (3 males, 23 females; mean age: 55.9±11.2 years; range, 24 to 74 years) followed at the rheumatology clinic, and 26 were healthy subjects (4 males, 22 females; mean age: 54.9±8.3 years; range, 41 to 70 years) for the control group. Duration and severity of morning stiffness were recorded for all participants. Activity of disease and functional status were evaluated by the Disease Activity Score 28 and Health Assessment Questionnaire (HAQ), respectively. Electrophysiological reaction times, severity of pain (Visual Analog Scale), HAQ, and grip strength were measured for each participant twice in 24 h in the morning (08:00-09:00 am) and afternoon (03:00-05:00 pm). Results In the RA group, motor reaction and response times and severity of pain values were significantly lower in the afternoon compared to the morning (p=0.030, p=0.031, and p=0.002, respectively), and hand grip strengths were significantly higher in the afternoon (p=0.007). In the control group, no change was observed between morning and afternoon measurements in the strength and reaction time variables. Conclusion Our hypothesis that stiffness would slow down the movements in the morning in RA was supported by the prolonged motor and response times in the morning compared to the afternoon. However, in the control group (no morning stiffness), there was no difference in reaction time variables between the morning and afternoon, objectively demonstrating the concept of morning stiffness in this study.
Collapse
Affiliation(s)
- Gönen Mengi
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, Türkiye
| | - Hüseyin Aydoğmuş
- Department of Physical Medicine and Rehabilitation, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, Türkiye
| | - Özden Özyemişçi Taşkıran
- Department of Physical Medicine and Rehabilitation, Koç University, School of Medicine, Istanbul, Türkiye
| | - Feride Göğüş
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Mehmet Beyazova
- Department of Physical Medicine and Rehabilitation, Gazi University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
2
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
3
|
Dumpa NR, Sarabu S, Bandari S, Zhang F, Repka MA. Chronotherapeutic Drug Delivery of Ketoprofen and Ibuprofen for Improved Treatment of Early Morning Stiffness in Arthritis Using Hot-Melt Extrusion Technology. AAPS PharmSciTech 2018; 19:2700-2709. [PMID: 29968041 DOI: 10.1208/s12249-018-1095-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
This work developed a chronotherapeutic drug delivery system (CTDDS) utilizing a potential continuous hot-melt extrusion (HME) technique. Ketoprofen (KTP) and ibuprofen (IBU) were used as two separate model drugs. Eudragit S100 (ES100) was the matrix-forming agent, and ethyl cellulose (EC) (2.5 and 5%) was the release-retarding agent. A 16-mm extruder was used to develop the CTDDS to pilot scale. The obtained extrudate strands were transparent, indicating that the drugs were homogeneously dispersed in the matrix in an amorphous form, confirmed by both differential scanning calorimetry and powder X-ray diffraction. The strands were pelletized into 1, 2, and 3 mm size pellets. A 100% drug release from 1, 2, and 3 mm pellets with 2.5% EC was observed at 12, 14, and 16 h, whereas the drug release was sustained for 14, 16, and 22 h from 5% EC pellets, respectively, for KTP. The release characteristics of IBU were similar to those of KTP with modest variations in release at lag time. The in vitro drug release study conducted in three-stage dissolution media showed a desired lag time of 6 h. The percent drug release from 1, 2, and 3 mm pellets with 40% drug load showed < 20% release from all formulations at 6 h. The amount of ethyl cellulose and pellet size significantly affected drug release. Formulations of both KTP and IBU were stable for 4 months at accelerated stability conditions of 40°C/75% RH. In summary, HME is a novel technique for developing CTDDS.
Collapse
|
4
|
Jayashree S, Nirekshana K, Guha G, Bhakta-Guha D. Cancer chemotherapeutics in rheumatoid arthritis: A convoluted connection. Biomed Pharmacother 2018; 102:894-911. [PMID: 29710545 DOI: 10.1016/j.biopha.2018.03.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is one of the most popular therapeutic strategies to treat cancer. However, cancer chemotherapeutics have often been associated with impairment of the immune system, which might consequently lead to an augmented risk of autoimmune disorders, such as rheumatoid arthritis. Though the accurate mechanistic facets of rheumatoid arthritis induction have not been interpreted yet, a conglomeration of genetic and environmental factors might promote its etiology. What makes the scenario more challenging is that patients with rheumatoid arthritis are at a significantly elevated risk of developing various types of cancer. It is intriguing to note that diverse cancer chemotherapy drugs are also commonly used to treat symptoms of rheumatoid arthritis. However, a colossal multitude of such cancer therapeutics has demonstrated highly varied results in rheumatoid arthritis patients, including both beneficial and adverse effects. Herein, we attempt to present a holistic account of the variegated modalities of this complex tripartite cross-talk between cancer, rheumatoid arthritis and chemotherapy drugs in order to decode the sinuous correlation between these two appalling pathological conditions.
Collapse
Affiliation(s)
- S Jayashree
- Cellular Dyshomeostasis Laboratory (CDHL), Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - K Nirekshana
- Cellular Dyshomeostasis Laboratory (CDHL), Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India.
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
5
|
Wang H, Cheng L, Wen H, Li C, Li Y, Zhang X, Wang Y, Wang Y, Wang T, Pan W, Yang X. A time-adjustable pulsatile release system for ketoprofen: In vitro and in vivo investigation in a pharmacokinetic study and an IVIVC evaluation. Eur J Pharm Biopharm 2017. [PMID: 28633956 DOI: 10.1016/j.ejpb.2017.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A time-adjustable pulsatile release system (TAPS) containing ketoprofen (KF) as an active pharmaceutical agent was developed having been designed for bedtime dosing and releasing drug in the early morning to control the symptoms of rheumatoid arthritis (RA). The formulation involved a tablet core (KF) and a control-release layer, and the coating membrane was composed of EC and Eudragit L100. A single-factor study, a central composite design and a response surface method were selected to optimize the formula and the optimum prescription was as follows: tablet core (KF 50mg, MCC 70mg, lactose 40mg, L-HPC 38mg), and film (EC 7.8g, Eudragit L100 4.2g, PEG 6000 1.8g in 95% alcohol each 200ml). The in vivo release behavior of the tablets was evaluated in Beagle dogs after a parallel oral administration of KF TAPS tablets and commercial KF capsules, when it was found that the KF TAPS tablets released the drug after a lag-time of 3.458h and the Tmax was 5.833h. The relative bioavailability was 85.01%, and the two formulations were bioequivalent in terms of Cmax and AUC0-t and the in vitro- in vivo correlations indicated that test formulation had a good in vivo-in vitro correlation (r=0.9703). These results show that the novel drug delivery system (TAPS) has the potential to be used as a KF preparation with chronophamacokinetics characteristics.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | - Lizhen Cheng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | - Haoyang Wen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | - Caiyan Li
- Department of Pharmacy, Shanxi Medical College for Continuing Education, Jinzhong 030619, China
| | - Yuenan Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | - Xiaoyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | - Yongfei Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | - Yanyan Wang
- Lianyungang TCM Branch of Jiangsu Union Technical Institute, Lianyungang 222006, China
| | - Tuanjie Wang
- Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang, Jiangsu 222001, China
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | - Xinggang Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China; Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China.
| |
Collapse
|
6
|
Abstract
Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system-resetting strategies for improving chronic disease control and patient outcomes.
Collapse
Affiliation(s)
- Annabelle Ballesta
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Pasquale F Innominato
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Robert Dallmann
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - David A Rand
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Francis A Lévi
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| |
Collapse
|