1
|
Diao WY, Ding CL, Yuan BY, Li Z, Sun N, Huang JB. Clinical Characteristics and Prognosis of HER2 Gene Phenotype in Patients with Non-Small Cell Lung Cancer. Int J Gen Med 2021; 14:9153-9161. [PMID: 34880654 PMCID: PMC8646112 DOI: 10.2147/ijgm.s328908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction We aim to investigate the relationship between HER2 gene phenotype and clinical characteristics, distribution and prognosis of non-small cell lung cancer (NSCLC) patients. Methods A total of 249 NSCLC patients admitted to the oncology department of our hospital from January 2015 to January 2018 were retrospectively analyzed. The clinicopathological information, CT signs, clinical efficacy and long-term prognosis were collected and compared. Results A total of 249 NSCLC patients underwent HER2 gene testing, 21 of them (8.43%) complied with HER2 alterations [HER2 (+)], and there were significant differences in tumor stages among patients with different HER2 phenotypes (P<0.05). Among 21 NSCLC patients with HER2 (+), HER2 gene mutation was found in 17 patients (81%), and HER2 gene amplification in 4 patients (19%). Among the HER2 mutations, 12 cases (57%) were 20 exon mutations, and 5 cases (19%) were other mutations. Analysis of CT signs showed that border lobulation/burr, necrosis sign and pleural depression were correlated with HER2 gene mutation (P<0.05). The incidence of EGRF mutation in HER (+) patients was significantly lower than that in HER (-) patients (P<0.05), but there was no significant difference in the incidence of ALK gene mutation among different HER phenotypes (P>0.05). The disease control rate of HER2 (+) patients was significantly lower than that of HER2 (-) patients, and the 12-month progression-free survival rate and survival rate of HER2 (+) patients were significantly higher than those of HER2 (-) patients (P<0.05). There was no significant difference in the incidence of ADR among HER2 patients with different phenotypes, but the incidence of ADR (adverse drug reaction) in HER2 (+) patients with Grade 3 or 4 was significantly higher than that in the control group (P<0.05). Discussion The incidence of HER2 gene mutations in NSCLC patients is relatively low, but it is far commoner in patients with stage IIIB~IV, among which exon 20 mutations are the most prevalent. In CT signs, the lesion lobulated sign/spiculated sign, necrosis signs, and pleural depression signs are related to HER2 gene mutations. In addition, HER2 gene mutations play a crucial role in the clinical prognosis and treatment safety of patients.
Collapse
Affiliation(s)
- Wei-Ying Diao
- Department of Pathology, The First Affiliated Hospital of Jiamusi University, Jimusi City, Heilongjiang Province, 154002, People's Republic of China
| | - Cheng-Long Ding
- Department of Pathology, The First Affiliated Hospital of Jiamusi University, Jimusi City, Heilongjiang Province, 154002, People's Republic of China
| | - Bo-Yang Yuan
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Jiamusi University, Jimusi City, Heilongjiang Province, 154002, People's Republic of China
| | - Zan Li
- Department of Analytical Chemistry Teaching and Research, Jiamusi University, Jiamusi City, Heilongjiang Province, 154002, People's Republic of China
| | - Na Sun
- Graduate Department, Jiamusi University, Jiamusi, Heilongjiang Province, 154002, People's Republic of China
| | - Jia-Bin Huang
- Department of Geratology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, 154002, People's Republic of China
| |
Collapse
|
2
|
Zamagni A, Pasini A, Pirini F, Ravaioli S, Giordano E, Tesei A, Calistri D, Ulivi P, Fabbri F, Foca F, Delmonte A, Molinari C. CDKN1A upregulation and cisplatin‑pemetrexed resistance in non‑small cell lung cancer cells. Int J Oncol 2020; 56:1574-1584. [PMID: 32236605 PMCID: PMC7170038 DOI: 10.3892/ijo.2020.5024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Cisplatin-pemetrexed is a frequently adopted first-line treatment for patients with advanced non-small cell lung cancer (NSCLC) ineligible for biological therapy, notwithstanding its limited efficacy. In the present study, the RAL cell line, an epidermal growth factor receptor (EGFR)-wild-type, p53- and KRAS-mutated model of NSCLC, was used to investigate novel biomarkers of resistance to this treatment. Cells were analyzed 96 h (96 h-post wo) and 21 days (21 days-post wo) after the combined treatment washout. Following an initial moderate sensitivity to the treatment, the cell growth proliferative capability had fully recovered. Gene expression analysis of the resistant surviving cells revealed a significant upregulation of CDKN1A expression in the cells at 96-h post-wo and, although to a lesser extent, in the cells at 21 days-post wo, accompanied by an enrichment of acetylated histone H3 in its promoter region. CDKN1A was also upregulated at the protein level, being mainly detected in the cytoplasm of the cells at 96 h-post wo. A marked increase in the number of apoptotic cells, together with a significant G1 phase block, were observed at 96-h post wo in the cells in which CDKN1A was knocked down, suggesting its involvement in the modulation of the response of RAL cells to the drug combination. On the whole, these data suggest that CDKN1A plays a role in the response to the cisplatin-pemetrexed combination in advanced KRAS-mutated NSCLC, thus suggesting that it may be used as a promising predictive marker.
Collapse
Affiliation(s)
- Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Alice Pasini
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), University of Bologna, Campus of Cesena, 47522 Cesena, Italy
| | - Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Sara Ravaioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), University of Bologna, Campus of Cesena, 47522 Cesena, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Chiara Molinari
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| |
Collapse
|
3
|
Pasini A, Brand OJ, Jenkins G, Knox AJ, Pang L. Suberanilohydroxamic acid prevents TGF-β1-induced COX-2 repression in human lung fibroblasts post-transcriptionally by TIA-1 downregulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:463-472. [PMID: 29555582 PMCID: PMC5910054 DOI: 10.1016/j.bbagrm.2018.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/07/2018] [Accepted: 03/14/2018] [Indexed: 12/28/2022]
Abstract
Cyclooxygenase-2 (COX-2), with its main antifibrotic metabolite PGE2, is regarded as an antifibrotic gene. Repressed COX-2 expression and deficient PGE2 have been shown to contribute to the activation of lung fibroblasts and excessive deposition of collagen in pulmonary fibrosis. We have previously demonstrated that COX-2 expression in lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) is epigenetically silenced and can be restored by epigenetic inhibitors. This study aimed to investigate whether COX-2 downregulation induced by the profibrotic cytokine transforming growth factor-β1 (TGF-β1) in normal lung fibroblasts could be prevented by epigenetic inhibitors. We found that COX-2 protein expression and PGE2 production were markedly reduced by TGF-β1 and this was prevented by the pan-histone deacetylase inhibitor suberanilohydroxamic acid (SAHA) and to a lesser extent by the DNA demethylating agent Decitabine (DAC), but not by the G9a histone methyltransferase (HMT) inhibitor BIX01294 or the EZH2 HMT inhibitor 3-deazaneplanocin A (DZNep). However, chromatin immunoprecipitation assay revealed that the effect of SAHA was unlikely mediated by histone modifications. Instead 3′-untranslated region (3′-UTR) luciferase reporter assay indicated the involvement of post-transcriptional mechanisms. This was supported by the downregulation by SAHA of the 3′-UTR mRNA binding protein TIA-1 (T-cell intracellular antigen-1), a negative regulator of COX-2 translation. Furthermore, TIA-1 knockdown by siRNA mimicked the effect of SAHA on COX-2 expression. These findings suggest SAHA can prevent TGF-β1-induced COX-2 repression in lung fibroblasts post-transcriptionally through a novel TIA-1-dependent mechanism and provide new insights into the mechanisms underlying its potential antifibrotic activity. Abbreviations Unlabelled TableSAHA | suberanilohydroxamic acid | TGF-β1 | transforming growth factor-β1 | COX-2 | cyclooxygenase-2 | TIA-1 | T-cell intracellular antigen-1 | PGE2 | prostaglandin E2 | IPF | idiopathic pulmonary fibrosis | DAC | Decitabine | HMT | histone methyltransferase | EZH2 | enhancer of zeste homolog 2 | DZNep | 3-deazaneplanocin A | 3′-UTR | 3′-untranslated region | α-SMA | α-smooth muscle actin | ECM | extracellular matrix | COL1 | collagen 1 | DNMT | DNA methyltransferase | HAT | histone acetyltransferase | HDAC | histone deacetylase | H3K9me3 | histone H3 lysine 9 trimethylation | ARE | AUUUA-rich element | HuR | human antigen R | ELAV1 | ELAV-like RNA binding protein 1 | TTP | Tristetraprolin | CUGBP2 | CUG triplet repeat, RNA binding protein 2 | F-NL | fibroblast from non-fibrotic lung | FCS | fetal calf serum |
The HDAC inhibitor SAHA upregulates the expression of the antifibrotic gene COX-2 post-transcriptionally. The mechanism relies on the downregulation of TIA-1, a negative regulator of COX-2 translation. SAHA has a therapeutic potential by preventing COX-2 repression induced by TGF-β1 in human lung fibroblasts.
Collapse
Affiliation(s)
- Alice Pasini
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom; Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Via Venezia 52, 47521 Cesena, FC, Italy
| | - Oliver J Brand
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Gisli Jenkins
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Alan J Knox
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Linhua Pang
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom.
| |
Collapse
|
4
|
Kong L, Zhang P, Li W, Yang Y, Tian Y, Wang X, Chen S, Yang Y, Huang T, Zhao T, Tang L, Su B, Li F, Liu XS, Zhang F. KDM1A promotes tumor cell invasion by silencing TIMP3 in non-small cell lung cancer cells. Oncotarget 2018; 7:27959-74. [PMID: 27058897 PMCID: PMC5053702 DOI: 10.18632/oncotarget.8563] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 03/26/2016] [Indexed: 12/15/2022] Open
Abstract
Epigenetic regulation plays an important role in tumor metastasis. KDM1A is a histone demethylase specific for H3K4me2/me1 demethylation, and has been found to be overexpressed in many cancers, including non-small cell lung cancer (NSCLC). However, the role of KDM1A in lung cancer remains unclear. Here, we show that KDM1A promotes cancer metastasis in NSCLC cells by repressing TIMP3 (tissue inhibitor of metalloproteinase 3) expression. Consistently with this, overexpression of TIMP3 inhibited MMP2 expression and JNK phosphorylation, both of which are known to be important for cell invasion and migration. Importantly, knockdown of TIMP3 in KDM1A-deficient cells rescued the metastatic capability of NSCLC cells. These findings were also confirmed by pharmacological inhibition assays. We further demonstrate that KDM1A removes H3K4me2 at the promoter of TIMP3, thus repressing the transcription of TIMP3. Finally, high expression of KDM1A and low expression of TIMP3 significantly correlate with a poor prognosis in NSCLC patients. This study establishes a mechanism by which KDM1A promotes cancer metastasis in NSCLC cells, and we suggest that KDM1A may be a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Lingzhi Kong
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wang Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yan Yang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Ye Tian
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xujun Wang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sujun Chen
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yuxin Yang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianhao Huang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tian Zhao
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Liang Tang
- The Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Bo Su
- The Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003, USA
| | - X Shirley Liu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02215, USA
| | - Fan Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Pasini A, Marchetti C, Sissi C, Cortesi M, Giordano E, Minarini A, Milelli A. Novel Polyamine-Naphthalene Diimide Conjugates Targeting Histone Deacetylases and DNA for Cancer Phenotype Reprogramming. ACS Med Chem Lett 2017; 8:1218-1223. [PMID: 29259737 PMCID: PMC5733267 DOI: 10.1021/acsmedchemlett.7b00289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/24/2017] [Indexed: 01/02/2023] Open
Abstract
A series of hybrid compounds was designed to target histone deacetylases and ds-/G-quadruplex DNAs by merging structural features deriving from Scriptaid and compound 1. Compound 6 binds different DNA arrangements, inhibits HDACs both in vitro and in cells, and is able to induce a reduction of cell proliferation. Moreover, compound 6 displays cell phenotype-reprogramming properties since it prevents the epithelial to mesenchymal transition in cancer cells, inducing a less aggressive and migratory phenotype, which is one of the goals of present innovative strategies in cancer therapies.
Collapse
Affiliation(s)
- Alice Pasini
- Department of Electrical,
Electronic and Information Engineering “Guglielmo Marconi”
(DEI), Alma Mater Studiorum-University of Bologna, Via Venezia
52, 47521 Cesena
(FC), Italy
| | - Chiara Marchetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum−University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Marilisa Cortesi
- Department of Electrical,
Electronic and Information Engineering “Guglielmo Marconi”
(DEI), Alma Mater Studiorum-University of Bologna, Via Venezia
52, 47521 Cesena
(FC), Italy
| | - Emanuele Giordano
- Department of Electrical,
Electronic and Information Engineering “Guglielmo Marconi”
(DEI), Alma Mater Studiorum-University of Bologna, Via Venezia
52, 47521 Cesena
(FC), Italy
- Health Sciences
and Technologies−Interdepartmental Center for Industrial Research
(HST-ICIR), Alma Mater Studiorum−University of Bologna, Via Tolara
di Sopra 41/E, 40064 Ozzano dell’Emilia (BO), Italy
- Advanced
Research Center on Electronic Systems (ARCES), Alma Mater Studiorum−University of Bologna, Via Vincenzo Toffano 2/2, 40125 Bologna, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum−University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Milelli
- Department
for Life Quality Studies, Alma Mater Studiorum−University of Bologna, Corso d’Augusto
237, 47921 Rimini, Italy
| |
Collapse
|
6
|
AIM: A Computational Tool for the Automatic Quantification of Scratch Wound Healing Assays. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7121237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Dhungel B, Jayachandran A, Layton CJ, Steel JC. Seek and destroy: targeted adeno-associated viruses for gene delivery to hepatocellular carcinoma. Drug Deliv 2017; 24:289-299. [PMID: 28165834 PMCID: PMC8241004 DOI: 10.1080/10717544.2016.1247926] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with high incidence globally. Increasing mortality and morbidity rates combined with limited treatment options available for advanced HCC press for novel and effective treatment modalities. Gene therapy represents one of the most promising therapeutic options. With the recent approval of herpes simplex virus for advanced melanoma, the field of gene therapy has received a major boost. Adeno-associated virus (AAV) is among the most widely used and effective viral vectors today with safety and efficacy demonstrated in a number of human clinical trials. This review identifies the obstacles for effective AAV based gene delivery to HCC which primarily include host immune responses and off-target effects. These drawbacks could be more pronounced for HCC because of the underlying liver dysfunction in most of the patients. We discuss approaches that could be adopted to tackle these shortcomings and manufacture HCC-targeted vectors. The combination of transductional targeting by modifying the vector capsid and transcriptional targeting using HCC-specific promoters has the potential to produce vectors which can specifically seek HCC and deliver therapeutic gene without significant side effects. Finally, the identification of novel HCC-specific ligands and promoters should facilitate and expedite this process.
Collapse
Affiliation(s)
- Bijay Dhungel
- a Gallipoli Medical Research Institute, Greenslopes Private Hospital , Brisbane , QLD , Australia.,b School of Medicine, The University of Queensland , Brisbane , QLD , Australia.,c University of Queensland Diamantina Institute, Translational Research Institute , Woolloongabba , QLD , Australia , and
| | - Aparna Jayachandran
- a Gallipoli Medical Research Institute, Greenslopes Private Hospital , Brisbane , QLD , Australia.,b School of Medicine, The University of Queensland , Brisbane , QLD , Australia
| | - Christopher J Layton
- b School of Medicine, The University of Queensland , Brisbane , QLD , Australia.,d Ophthalmology Department, Gallipoli Medical Research Institute, Greenslopes Private Hospital , Brisbane , QLD , Australia
| | - Jason C Steel
- a Gallipoli Medical Research Institute, Greenslopes Private Hospital , Brisbane , QLD , Australia.,b School of Medicine, The University of Queensland , Brisbane , QLD , Australia
| |
Collapse
|
8
|
How does chromatin package DNA within nucleus and regulate gene expression? Int J Biol Macromol 2017; 101:862-881. [PMID: 28366861 DOI: 10.1016/j.ijbiomac.2017.03.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
The human body is made up of 60 trillion cells, each cell containing 2 millions of genomic DNA in its nucleus. How is this genomic deoxyribonucleic acid [DNA] organised into nuclei? Around 1880, W. Flemming discovered a nuclear substance that was clearly visible on staining under primitive light microscopes and named it 'chromatin'; this is now thought to be the basic unit of genomic DNA organization. Since long before DNA was known to carry genetic information, chromatin has fascinated biologists. DNA has a negatively charged phosphate backbone that produces electrostatic repulsion between adjacent DNA regions, making it difficult for DNA to fold upon itself. In this article, we will try to shed light on how does chromatin package DNA within nucleus and regulate gene expression?
Collapse
|
9
|
Simiele F, Recchiuti A, Patruno S, Plebani R, Pierdomenico AM, Codagnone M, Romano M. Epigenetic regulation of the formyl peptide receptor 2 gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1252-8. [PMID: 27424221 DOI: 10.1016/j.bbagrm.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/24/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
Lipoxin (LX) A4, a main stop signal of inflammation, exerts potent bioactions by activating a specific G protein-coupled receptor, termed formyl peptide receptor 2 and recently renamed ALX/FPR2. Knowledge of the regulatory mechanisms that drive ALX/FPR2 gene expression is key for the development of innovative anti-inflammatory pharmacology. Here, we examined chromatin patterns of the ALX/FPR2 gene. We report that in MDA-MB231 breast cancer cells, the ALX/FPR2 gene undergoes epigenetic silencing characterized by low acetylation at lysine 27 and trimethylation at lysine 4, associated with high methylation at lysine 27 of histone 3. This pattern, which is consistent with transcriptionally inaccessible chromatin leading to low ALX/FPR2 mRNA and protein expression, is reversed in polymorphonuclear leukocytes that express high ALX/FPR2 levels. Activation of p300 histone acetyltransferase and inhibition of DNA methyltransferase restored chromatin accessibility and significantly increased ALX/FPR2 mRNA transcription and protein levels in MDA-MB231 cells, as well as in pulmonary artery endothelial cells. In both cells types, changes in the histone acetylation/methylation status enhanced ALX/FPR2 signaling in response to LXA4. Collectively, these results uncover unappreciated epigenetic regulation of ALX/FPR2 expression that can be exploited for innovative approaches to inflammatory disorders.
Collapse
Affiliation(s)
- Felice Simiele
- Department of Medical, Oral, and Biotechnological Science, "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy; Center of Aging Sciences and Translational Medicine (CeSI-MeT), "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy
| | - Antonio Recchiuti
- Department of Medical, Oral, and Biotechnological Science, "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy; Center of Aging Sciences and Translational Medicine (CeSI-MeT), "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy
| | - Sara Patruno
- Department of Medical, Oral, and Biotechnological Science, "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy; Center of Aging Sciences and Translational Medicine (CeSI-MeT), "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy
| | - Roberto Plebani
- Department of Medical, Oral, and Biotechnological Science, "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy; Center of Aging Sciences and Translational Medicine (CeSI-MeT), "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy
| | - Anna Maria Pierdomenico
- Department of Medicine and Aging Science, "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy; Center of Aging Sciences and Translational Medicine (CeSI-MeT), "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy
| | - Marilina Codagnone
- Department of Medical, Oral, and Biotechnological Science, "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy; Center of Aging Sciences and Translational Medicine (CeSI-MeT), "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy
| | - Mario Romano
- Department of Medical, Oral, and Biotechnological Science, "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy; Center of Aging Sciences and Translational Medicine (CeSI-MeT), "G. D'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11/13, 66100 Chieti, Italy.
| |
Collapse
|
10
|
Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O. K-Ras4B/calmodulin/PI3Kα: A promising new adenocarcinoma-specific drug target? Expert Opin Ther Targets 2016; 20:831-42. [DOI: 10.1517/14728222.2016.1135131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
11
|
Zahnow C, Topper M, Stone M, Murray-Stewart T, Li H, Baylin S, Casero R. Inhibitors of DNA Methylation, Histone Deacetylation, and Histone Demethylation: A Perfect Combination for Cancer Therapy. Adv Cancer Res 2016; 130:55-111. [PMID: 27037751 DOI: 10.1016/bs.acr.2016.01.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetic silencing and inappropriate activation of gene expression are frequent events during the initiation and progression of cancer. These events involve a complex interplay between the hypermethylation of CpG dinucleotides within gene promoter and enhancer regions, the recruitment of transcriptional corepressors and the deacetylation and/or methylation of histone tails. These epigenetic regulators act in concert to block transcription or interfere with the maintenance of chromatin boundary regions. However, DNA/histone methylation and histone acetylation states are reversible, enzyme-mediated processes and as such, have emerged as promising targets for cancer therapy. This review will focus on the potential benefits and synergistic/additive effects of combining DNA-demethylating agents and histone deacetylase inhibitors or lysine-specific demethylase inhibitors together in epigenetic therapy for solid tumors and will highlight what is known regarding the mechanisms of action that contribute to the antitumor response.
Collapse
|