1
|
Blitek M, Gastaldi C, Doisy M, Le Coz O, Tensorer T, Garcia L, Goyenvalle A. Combined 20-Hydroxyecdysone and Antisense-Mediated Exon Skipping Improve Functional Outcomes in a Mouse Model of Duchenne Muscular Dystrophy. Nucleic Acid Ther 2025; 35:55-67. [PMID: 39960827 DOI: 10.1089/nat.2024.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked disorder caused by mutations in the DMD gene, resulting in a lack of dystrophin protein. This leads to progressive muscle wasting, cardiac and respiratory dysfunction, and premature death. Antisense oligonucleotide (ASO)-based therapies represent a promising approach to treating DMD, with several already approved by the FDA. However, the levels of dystrophin restoration achieved in clinical trials are often insufficient for meaningful therapeutic impact, highlighting the urgent need to enhance ASO efficacy. One potential strategy is to improve muscle pathophysiology, which is compromised in DMD due to cycles of necrosis and regeneration, chronic inflammation, and fibrotic and adipose tissue replacement. These disease characteristics may limit ASO efficiency. In this study, we evaluated the combination of tricyclo-DNA-ASO targeting the Dmd exon 23 with 20-hydroxyecdysone (20-E), a steroid hormone known to activate the protective arm of the renin-angiotensin-aldosterone system, enhance protein and ATP synthesis, and exhibit anti-inflammatory and antifibrotic properties. Mdx mice were treated with ASO alone or in combination with 20-E for 8 weeks. While both treatments restored similar levels of dystrophin and significantly improved functional outcomes such as the distance run and maximum speed in the treadmill exhaustion test, other improvements like the specific force and the decrease in the force drop after eccentric contraction were observed only with the combination therapy. Importantly, the cotreatment was well tolerated without liver or kidney toxicity. These findings provide proof of concept that combining 20-E with ASO therapy can ameliorate dystrophic pathology and improve muscle function in a DMD mouse model. By targeting both dystrophin restoration and muscle pathophysiology, this combined approach may offer a therapeutic strategy with the potential for meaningful clinical benefits, warranting further investigation and potential translation to patients.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/therapy
- Muscular Dystrophy, Duchenne/pathology
- Ecdysterone/pharmacology
- Mice
- Mice, Inbred mdx
- Disease Models, Animal
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Dystrophin/genetics
- Dystrophin/metabolism
- Exons/genetics
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Male
- Humans
Collapse
Affiliation(s)
- Mathilde Blitek
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Cécile Gastaldi
- Medical Biology Department, Centre Scientifique de Monaco, Monaco Principality of Monaco, Monaco
- LIA BAHN, CSM-UVSQ, Monaco, Principality of Monaco, Monaco
| | - Mathilde Doisy
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Olivier Le Coz
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Thomas Tensorer
- SQY Therapeutics, UVSQ, END-ICAP, Montigny le Bretonneux, France
| | - Luis Garcia
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
- LIA BAHN, CSM-UVSQ, Monaco, Principality of Monaco, Monaco
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
- LIA BAHN, CSM-UVSQ, Monaco, Principality of Monaco, Monaco
| |
Collapse
|
2
|
Ruchi R, Raman GM, Kumar V, Bahal R. Evolution of antisense oligonucleotides: navigating nucleic acid chemistry and delivery challenges. Expert Opin Drug Discov 2025; 20:63-80. [PMID: 39653607 PMCID: PMC11823135 DOI: 10.1080/17460441.2024.2440095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION Antisense oligonucleotide (ASO) was established as a viable therapeutic option for genetic disorders. ASOs can target RNAs implicated in various diseases, including upregulated mRNA and pre-mRNA undergoing abnormal alternative splicing events. Therapeutic applications of ASOs have been proven with the Food and Drug Administration approval of several drugs in recent years. Earlier enzymatic stability and delivery remains a big challenge for ASOs. Introducing new chemical modifications and new formulations resolving the issues related to the nuclease stability and delivery of the ASOs. Excitingly, ASOs-based bioconjugates that target the hepatocyte have gained much attraction. Efforts are ongoing to increase the therapeutic application of the ASOs to the extrahepatic tissue as well. AREA COVERED We have briefly discussed the mechanism of ASOs, the development of new chemistries, and delivery strategies for ASO-based drug discovery and development. The discussion focuses more on the already approved ASOs and those in the clinical development stage. EXPERT OPINION To expand the clinical application of ASOs, continuous effort is required to develop precise delivery strategies for targeting extrahepatic tissue to minimize the off-target effects.
Collapse
Affiliation(s)
- Ruchi Ruchi
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Govind Mukesh Raman
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
- Farmington High School, Farmington, CT, USA
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
3
|
González-Martínez I, Cerro-Herreros E, Moreno N, García-Rey A, Espinosa-Espinosa J, Carrascosa-Sàez M, Piqueras-Losilla D, Arzumanov A, Seoane-Miraz D, Jad Y, Raz R, Wood MJ, Varela MA, Llamusí B, Artero R. Peptide-conjugated antimiRs improve myotonic dystrophy type 1 phenotypes by promoting endogenous MBNL1 expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102024. [PMID: 37744174 PMCID: PMC10514136 DOI: 10.1016/j.omtn.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the DMPK gene that generates toxic RNA with a myriad of downstream alterations in RNA metabolism. A key consequence is the sequestration of alternative splicing regulatory proteins MBNL1/2 by expanded transcripts in the affected tissues. MBNL1/2 depletion interferes with a developmental alternative splicing switch that causes the expression of fetal isoforms in adults. Boosting the endogenous expression of MBNL proteins by inhibiting the natural translational repressors miR-23b and miR-218 has previously been shown to be a promising therapeutic approach. We designed antimiRs against both miRNAs with a phosphorodiamidate morpholino oligonucleotide (PMO) chemistry conjugated to cell-penetrating peptides (CPPs) to improve delivery to affected tissues. In DM1 cells, CPP-PMOs significantly increased MBNL1 levels. In some candidates, this was achieved using concentrations less than two orders of magnitude below the median toxic concentration, with up to 5.38-fold better therapeutic window than previous antagomiRs. In HSALR mice, intravenous injections of CPP-PMOs improve molecular, histopathological, and functional phenotypes, without signs of toxicity. Our findings place CPP-PMOs as promising antimiR candidates to overcome the treatment delivery challenge in DM1 therapy.
Collapse
Affiliation(s)
- Irene González-Martínez
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Estefanía Cerro-Herreros
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Nerea Moreno
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Andrea García-Rey
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Jorge Espinosa-Espinosa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Sciences Faculty, Universidad Internacional SEK, Quito 170521, Ecuador
| | - Marc Carrascosa-Sàez
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Diego Piqueras-Losilla
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Andrey Arzumanov
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - David Seoane-Miraz
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yahya Jad
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Richard Raz
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Matthew J. Wood
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Miguel A. Varela
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Beatriz Llamusí
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Rubén Artero
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| |
Collapse
|
4
|
Huang S, Hao XY, Li YJ, Wu JY, Xiang DX, Luo S. Nonviral delivery systems for antisense oligonucleotide therapeutics. Biomater Res 2022; 26:49. [PMID: 36180936 PMCID: PMC9523189 DOI: 10.1186/s40824-022-00292-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells. We believe that as new ASO drugs develop, the exploration for corresponding nonviral vectors is inevitable. Intensive development of nonviral vectors with improved delivery strategies based on specific targets can continue to expand the value of ASO therapeutic approaches. Here, we provide an overview of current nonviral delivery strategies, including ASOs modifications, action mechanisms, and multi-carrier methods, which aim to address the irreplaceable role of nonviral vectors in the progressive development of ASOs delivery.
Collapse
Affiliation(s)
- Si Huang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Yan Hao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yong-Jiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China. .,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China. .,Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
5
|
Su Y, Raguraman P, Veedu RN, Filichev VV. Phosphorothioate modification improves exon-skipping of antisense oligonucleotides based on sulfonyl phosphoramidates in mdx mouse myotubes. Org Biomol Chem 2022; 20:3790-3797. [PMID: 35438707 DOI: 10.1039/d2ob00304j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2'-O-Methyl (2'-OMe) antisense oligonucleotides (AOs) possessing a various number of 4-(trimethylammonio)butylsulfonyl or tosyl phosphoramidates (N+ and Ts-modifications, respectively) instead of a native phosphodiester linkage were designed to skip exon-23 in dystrophin pre-mRNA transcript in mdx mice myotubes. AOs bearing several zwitterionic N+ modifications in the sequence had remarkably increased thermal stability towards complementary mRNA in comparison with 2'-OMe-RNAs having negatively charged Ts and phosphorothioate (PS) linkages. However, only Ts-modified AOs exhibited a similar level of exon skipping in comparison with fully modified PS-containing 2'-OMe-RNA, whereas the exon skipping induced by N+ modified AOs was much lower with no exon-skipping detected for AOs having seven N+ modifications. The level of exon-skipping was improved once Ts and especially N+ moieties were used in combination with PS-modification, most likely through improved cellular and nuclear uptake of AOs. These results provide new insights on expanding the design of novel chemically modified AOs based on phosphate modifications.
Collapse
Affiliation(s)
- Yongdong Su
- School of Natural Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia. .,Perron Institute for Neurological and Translational Science, Perth 6150, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia. .,Perron Institute for Neurological and Translational Science, Perth 6150, Australia
| | - Vyacheslav V Filichev
- School of Natural Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Soukarieh O, Meguerditchian C, Proust C, Aïssi D, Eyries M, Goyenvalle A, Trégouët DA. Common and Rare 5′UTR Variants Altering Upstream Open Reading Frames in Cardiovascular Genomics. Front Cardiovasc Med 2022; 9:841032. [PMID: 35387445 PMCID: PMC8977850 DOI: 10.3389/fcvm.2022.841032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/16/2023] Open
Abstract
High-throughput sequencing (HTS) technologies are revolutionizing the research and molecular diagnosis landscape by allowing the exploration of millions of nucleotide sequences at an unprecedented scale. These technologies are of particular interest in the identification of genetic variations contributing to the risk of rare (Mendelian) and common (multifactorial) human diseases. So far, they have led to numerous successes in identifying rare disease-causing mutations in coding regions, but few in non-coding regions that include introns, untranslated (UTR), and intergenic regions. One class of neglected non-coding variations is that of 5′UTR variants that alter upstream open reading frames (upORFs) of the coding sequence (CDS) of a natural protein coding transcript. Following a brief summary of the molecular bases of the origin and functions of upORFs, we will first review known 5′UTR variations altering upORFs and causing rare cardiovascular disorders (CVDs). We will then investigate whether upORF-affecting single nucleotide polymorphisms could be good candidates for explaining association signals detected in the context of genome-wide association studies for common complex CVDs.
Collapse
Affiliation(s)
- Omar Soukarieh
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
- *Correspondence: Omar Soukarieh,
| | - Caroline Meguerditchian
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
| | - Carole Proust
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
| | - Dylan Aïssi
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
| | - Mélanie Eyries
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | | | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
| |
Collapse
|
7
|
Saoudi A, Goyenvalle A. [RNA splicing modulation: Therapeutic progress and perspectives]. Med Sci (Paris) 2021; 37:625-631. [PMID: 34180822 DOI: 10.1051/medsci/2021091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Advances in genetic and genomic research continue to increase our knowledge of hereditary diseases, and an increasing number of them are being attributed to aberrant splicing, thus representing ideal targets for RNA modulation therapies. New strategies to skip or re-include exons during the splicing process have emerged and are now widely evaluated in the clinic. Several drugs have recently been approved in particular for the treatment of Duchenne muscular dystrophy and spinal muscular atrophy. Among these molecules, antisense oligonucleotides, or ASOs, have gained increasing interest and have constantly been improved over the years through chemical modifications and design. However, their limited biodistribution following systemic administration still represents a major hurdle and the development of more potent alternative chemistries or new delivery systems has become a very active line of research in the past few years. In parallel, the use of small molecules with excellent biodistribution properties or of viral vectors to convey antisense sequences is also being investigated. In this review, we summarize the recent advances in splicing therapies through two examples of neuromuscular diseases and we discuss their main benefits and current limitations.
Collapse
Affiliation(s)
- Amel Saoudi
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Handicap neuromusculaire - physiopathologie, biothérapie et pharmacologie appliquées, 78000 Versailles, France - Université Paris-Saclay, CNRS, Institut des neurosciences Paris Saclay, 91190 Gif-sur-Yvette, France
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Handicap neuromusculaire - physiopathologie, biothérapie et pharmacologie appliquées, 78000 Versailles, France - Laboratoire international associé Biothérapies appliquées aux handicaps neuromusculaires (LIA BAHN), Centre scientifique de Monaco, Monaco
| |
Collapse
|
8
|
Restoring Protein Expression in Neuromuscular Conditions: A Review Assessing the Current State of Exon Skipping/Inclusion and Gene Therapies for Duchenne Muscular Dystrophy and Spinal Muscular Atrophy. BioDrugs 2021; 35:389-399. [PMID: 34097287 DOI: 10.1007/s40259-021-00486-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The debilitating neuromuscular disorders Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which harm 1 in 5000 newborn males and 1 in 11,000 newborns, respectively, are marked by progressive muscle wasting among other complications. While DMD causes generalized muscle weakness due to the absence of the dystrophin protein, SMA patients generally face motor neuron degeneration because of the lack of the survival motor neuron (SMN) protein. Many of the most promising therapies for both conditions restore the absent proteins dystrophin and SMN. Antisense oligonucleotide-mediated exon skipping and inclusion therapies are advancing clinically with the approved DMD therapies casimersen, eteplirsen, golodirsen, and viltolarsen, and the SMA therapy nusinersen. Existing antisense therapies focus on skeletal muscle for DMD and motor neurons for SMA, respectively. Through innovative techniques, such as peptide conjugation and multi-exon skipping, these therapies could be optimized for efficacy and applicability. By contrast, gene replacement therapy is administered only once to patients during treatment. Currently, only onasemnogene abeparvovec for SMA has been approved. Safety shortcomings remain a major challenge for gene therapy. Nevertheless, gene therapy for DMD has strong potential to restore dystrophin expression in patients. In light of promising functional improvements, antisense and gene therapies stand poised to elevate the lives of patients with DMD and SMA.
Collapse
|