1
|
Chen P, Gong Q, Wang H, Wang C, Wang W, Wu J, Wu Z, Wang L. Analgesic Mechanism of Emodin in Neuropathic Pain Through Inhibiting P2X4 Purinoceptor Signaling. Mol Neurobiol 2025:10.1007/s12035-025-04906-5. [PMID: 40195215 DOI: 10.1007/s12035-025-04906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Neuropathic pain (NeP) is a most intractable health problem due to its unsatisfactory treatment effect. Emodin, a natural anthraquinone derivative extracted from Rheum palmatum and Polygonam cuspidatum, exhibits the analgesic effects in various NeP models. However, the underlying mechanisms remain elusive. This study employed whole transcriptome sequencing and metabolomics to elucidate emodin's analgesic mechanism in the spinal cord of chronic constriction injury (CCI) rats. Fifteen-day emodin treatment reversed hyperalgesia and deficit of sciatic nerve function induced by CCI and significantly decreased the concentrations of TNF-α, IL- 1β, IL- 6, IL- 18, and BDNF in the spinal cord of the CCI rats. Transcriptome sequencing revealed altered expression of 85 mRNAs in the spinal cord of emodin-treated and CCI rats, with 53 mRNAs upregulated and 32 mRNAs downregulated. Notably, seven genes (P2RX4, CXCL10, ALOX5, SCN4 A, AURKB, AQP9) overlapped with established NeP targets. Untargeted metabolomic analyses identified 67 significantly altered metabolites (46 upregulated, 32 downregulated) in the spinal cord upon emodin treatment. Integrative analysis highlighted shared pathways between differentially expressed genes and metabolites, including arachidonic acid metabolism, cAMP signaling pathway, and Fc epsilon RI signaling pathway. Western blot and immunofluorescent staining further proved the decreased expression of IBA1, P2X4R, p38 MAPK, p-p38 MAPK, NF-κB, p-NF-κB, and TNF-α, IL- 1β. In conclusion, this study demonstrated that emodin played the analgesic effect in the CCI rats, possibly through suppression of P2X4 purinoceptor signaling in spinal microglia, suggesting a potential therapeutic target for NeP.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Qian Gong
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hao Wang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou, China
| | - Wenjing Wang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jing Wu
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhibing Wu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
de Araújo JIF, Leite GDO, Vieira-Neto AE, da Silva-Neto L, de Fátima Â, Campos AR. Nicorandil Repurposing in Orofacial Pain: Preclinical Findings in Adult Zebrafish. ChemMedChem 2025:e2401007. [PMID: 40120137 DOI: 10.1002/cmdc.202401007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
This study investigates the orofacial antinociceptive activity of nicorandil in adult zebrafish and explores the involvement of TRP channels in this effect. Nicorandil, a known antianginal drug, reduces nociceptive behaviors induced by capsaicin (TRPV1 agonist), cinnamaldehyde (TRPA1 agonist), and menthol (TRPM8 agonist) without altering the locomotor activity of the zebrafish. Pretreatment with specific TRPA1 and TRPV1 antagonists prevents the antinociceptive effects of nicorandil, indicating its action on these channels. Molecular docking studies support these findings, demonstrating high chemical affinity and specific binding of nicorandil to the TRPV1 and TRPA1 channels, leading to stabilization and reduced biological activity of these channels. In contrast, the antinociceptive effect of nicorandil on menthol-induced nociception is not affected by a TRPM8 antagonist, suggesting that TRPM8 modulation is not involved in nicorandil's mechanism of action. The study highlights the potential of nicorandil as an analgesic through its interaction with TRPV1 and TRPA1 channels, providing a molecular basis for repositioning nicorandil as an effective analgesic drug.
Collapse
Affiliation(s)
| | - Gerlânia de Oliveira Leite
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, 60811-905, Brasil
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato, 63.130-025, Brasil
| | | | | | - Ângelo de Fátima
- Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brasil
| | - Adriana Rolim Campos
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, 60811-905, Brasil
| |
Collapse
|
3
|
Khedpande N, Barve K. Role of gut dysbiosis in drug-resistant epilepsy: Pathogenesis and available therapeutic strategies. Brain Res 2025; 1850:149385. [PMID: 39643107 DOI: 10.1016/j.brainres.2024.149385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Over 70 million people worldwide suffer from epilepsy, a persistent brain disorder. Although there are more than 20 antiseizure drugs available for the symptomatic treatment of epilepsy, about one-third of patients with epilepsy experience seizures that show resistance to pharmacotherapy. Since patients with drug-resistant epilepsy are more prone to physical injuries, psychosocial dysfunction, early death, and deteriorated life quality, the development of safer and more effective treatments is a crucial clinical need. The gut-brain axis and microbiome research advances have provided new insights into the pathophysiology of epilepsy, the resistance to anti-seizure medicine, and potential treatment targets. Inflammation, disturbance of the blood-brain barrier, and altered neurotransmitters are key pathways linked to gut dysbiosis. The characterization of microbial species and functional pathways has advanced thanks to metagenomic sequencing and high-throughput analysis. In this review, we elaborate on the gut-mediated molecular pathways involved in drug-resistant epilepsy, the gut- modulatory therapeutic options, and their combination with antiseizure medications for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Nidhi Khedpande
- Department of Pharmacology, Shobhabne Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India
| | - Kalyani Barve
- Department of Pharmacology, Shobhabne Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India.
| |
Collapse
|
4
|
Lee SO, Kuthati Y, Huang WH, Wong CS. Semaglutide Ameliorates Diabetic Neuropathic Pain by Inhibiting Neuroinflammation in the Spinal Cord. Cells 2024; 13:1857. [PMID: 39594606 PMCID: PMC11593193 DOI: 10.3390/cells13221857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1) receptor agonists are frequently used to treat type 2 diabetes and obesity. Despite the development of several drugs for neuropathic pain management, their poor efficacy, tolerance, addiction potential, and side effects limit their usage. Teneligliptin, a DPP-4 inhibitor, has been shown to reduce spinal astrocyte activation and neuropathic pain caused by partial sciatic nerve transection. Additionally, we showed its capacity to improve the analgesic effects of morphine and reduce analgesic tolerance. Recent studies indicate that GLP-1 synthesized in the brain activates GLP-1 receptor signaling pathways, essential for neuroprotection and anti-inflammatory effects. Multiple in vitro and in vivo studies using preclinical models of neurodegenerative disorders have shown the anti-inflammatory properties associated with glucagon-like peptide-1 receptor (GLP-1R) activation. This study aimed to investigate the mechanism of antinociception and the effects of the GLP-1 agonist semaglutide (SEMA) on diabetic neuropathic pain in diabetic rats. METHODS Male Wistar rats, each weighing between 300 and 350 g, were categorized into four groups: one non-diabetic sham group and three diabetic groups. The diabetic group received a single intraperitoneal injection of streptozotocin (STZ) at a dosage of 60 mg/kg to induce diabetic neuropathy. After 4 weeks of STZ injection, one diabetic group was given saline (vehicle), and the other two were treated with either 1× SEMA (1.44 mg/kg, orally) or 2× SEMA (2.88 mg/kg, orally). Following a 4-week course of oral drug treatment, behavioral, biochemical, and immunohistochemical analyses were carried out. The mechanical allodynia, thermal hyperalgesia, blood glucose, advanced glycation end products (AGEs), plasma HbA1C, and spinal inflammatory markers were evaluated. RESULTS SEMA treatment significantly reduced both allodynia and hyperalgesia in the diabetic group. SEMA therapy had a limited impact on body weight restoration and blood glucose reduction. In diabetic rats, SEMA lowered the amounts of pro-inflammatory cytokines in the spinal cord and dorsal horn. It also lowered the activation of microglia and astrocytes in the dorsal horn. SEMA significantly reduced HbA1c and AGE levels in diabetic rats compared to the sham control group. CONCLUSIONS These results indicate SEMA's neuroprotective benefits against diabetic neuropathic pain, most likely by reducing inflammation and oxidative stress by inhibiting astrocyte and microglial activity. Our findings suggest that we can repurpose GLP-1 agonists as potent anti-hyperalgesic and anti-inflammatory drugs to treat neuropathic pain without serious side effects.
Collapse
Affiliation(s)
- Sing-Ong Lee
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan; (S.-O.L.); (Y.K.); (W.-H.H.)
- Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu City 306, Taiwan
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan; (S.-O.L.); (Y.K.); (W.-H.H.)
| | - Wei-Hsiu Huang
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan; (S.-O.L.); (Y.K.); (W.-H.H.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan; (S.-O.L.); (Y.K.); (W.-H.H.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
5
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Petrikonis K, Bernatoniene J, Kopustinskiene DM, Casale R, Davinelli S, Saso L. The Antinociceptive Role of Nrf2 in Neuropathic Pain: From Mechanisms to Clinical Perspectives. Pharmaceutics 2024; 16:1068. [PMID: 39204413 PMCID: PMC11358986 DOI: 10.3390/pharmaceutics16081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropathic pain, a chronic condition resulting from nerve injury or dysfunction, presents significant therapeutic challenges and is closely associated with oxidative stress and inflammation, both of which can lead to mitochondrial dysfunction. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, a critical cellular defense mechanism against oxidative stress, has emerged as a promising target for neuropathic pain management. Nrf2 modulators enhance the expression of antioxidant and cytoprotective genes, thereby reducing oxidative damage, inflammation, and mitochondrial impairment. This review explores the antinociceptive effects of Nrf2, highlighting how pharmacological agents and natural compounds may be used as potential therapeutic strategies against neuropathic pain. Although preclinical studies demonstrate significant pain reduction and improved nerve function through Nrf2 activation, several clinical challenges need to be addressed. However, emerging clinical evidence suggests potential benefits of Nrf2 modulators in several conditions, such as diabetic neuropathy and multiple sclerosis. Future research should focus on further elucidating the molecular role of Nrf2 in neuropathic pain to optimize its modulation efficacy and maximize clinical utility.
Collapse
Affiliation(s)
- Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Roberto Casale
- Opusmedica Persons, Care & Research-NPO, 29121 Piacenza, Italy;
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
7
|
Biskupiak Z, Ha VV, Rohaj A, Bulaj G. Digital Therapeutics for Improving Effectiveness of Pharmaceutical Drugs and Biological Products: Preclinical and Clinical Studies Supporting Development of Drug + Digital Combination Therapies for Chronic Diseases. J Clin Med 2024; 13:403. [PMID: 38256537 PMCID: PMC10816409 DOI: 10.3390/jcm13020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Limitations of pharmaceutical drugs and biologics for chronic diseases (e.g., medication non-adherence, adverse effects, toxicity, or inadequate efficacy) can be mitigated by mobile medical apps, known as digital therapeutics (DTx). Authorization of adjunct DTx by the US Food and Drug Administration and draft guidelines on "prescription drug use-related software" illustrate opportunities to create drug + digital combination therapies, ultimately leading towards drug-device combination products (DTx has a status of medical devices). Digital interventions (mobile, web-based, virtual reality, and video game applications) demonstrate clinically meaningful benefits for people living with Alzheimer's disease, dementia, rheumatoid arthritis, cancer, chronic pain, epilepsy, depression, and anxiety. In the respective animal disease models, preclinical studies on environmental enrichment and other non-pharmacological modalities (physical activity, social interactions, learning, and music) as surrogates for DTx "active ingredients" also show improved outcomes. In this narrative review, we discuss how drug + digital combination therapies can impact translational research, drug discovery and development, generic drug repurposing, and gene therapies. Market-driven incentives to create drug-device combination products are illustrated by Humira® (adalimumab) facing a "patent-cliff" competition with cheaper and more effective biosimilars seamlessly integrated with DTx. In conclusion, pharma and biotech companies, patients, and healthcare professionals will benefit from accelerating integration of digital interventions with pharmacotherapies.
Collapse
Affiliation(s)
- Zack Biskupiak
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Victor Vinh Ha
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Aarushi Rohaj
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
- The Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84113, USA
| | - Grzegorz Bulaj
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Li L, Li T, Qu X, Sun G, Fu Q, Han G. Stress/cell death pathways, neuroinflammation, and neuropathic pain. Immunol Rev 2024; 321:33-51. [PMID: 37688390 DOI: 10.1111/imr.13275] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Neuropathic pain is a common and debilitating modality of chronic pain induced by a lesion or disease of the somatosensory nervous system. Albeit the elucidation of numerous pathophysiological mechanisms and the development of potential treatment compounds, safe and reliable therapies of neuropathic pain remain poor. Multiple stress/cell death pathways have been shown to be implicated in neuroinflammation during neuropathic pain. Here, we summarize the current knowledge of stress/cell death pathways and present an overview of the roles and molecular mechanisms of stress/cell death pathways in neuroinflammation during neuropathic pain, covering intrinsic and extrinsic apoptosis, autophagy, mitophagy, ferroptosis, pyroptosis, necroptosis, and phagoptosis. Small molecule compounds that modulate stress/cell death pathways in alleviating neuropathic pain are discussed mainly based on preclinical neuropathic pain models. These findings will contribute to in-depth understanding of the pathological processes during neuropathic pain as well as bridge the gap between basic and translational research to uncover new neuroprotective interventions.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinyu Qu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guangwei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Han
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Wedel S, Hahnefeld L, Schreiber Y, Namendorf C, Heymann T, Uhr M, Schmidt MV, de Bruin N, Hausch F, Thomas D, Geisslinger G, Sisignano M. SAFit2 ameliorates paclitaxel-induced neuropathic pain by reducing spinal gliosis and elevating pro-resolving lipid mediators. J Neuroinflammation 2023; 20:149. [PMID: 37355700 DOI: 10.1186/s12974-023-02835-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Chemotherapy-induced neuropathic pain (CIPN) describes a pathological pain state that occurs dose-dependently as a side effect and can limit or even impede an effective cancer therapy. Unfortunately, current treatment possibilities for CIPN are remarkably confined and mostly inadequate as CIPN therapeutics themselves consist of low effectiveness and may induce severe side effects, pointing out CIPN as pathological entity with an emerging need for novel treatment targets. Here, we investigated whether the novel and highly specific FKBP51 inhibitor SAFit2 reduces paclitaxel-induced neuropathic pain. METHODS In this study, we used a well-established multiple low-dose paclitaxel model to investigate analgesic and anti-inflammatory properties of SAFit2. For this purpose, the behavior of the mice was recorded over 14 days and the mouse tissue was then analyzed using biochemical methods. RESULTS Here, we show that SAFit2 is capable to reduce paclitaxel-induced mechanical hypersensitivity in mice. In addition, we detected that SAFit2 shifts lipid levels in nervous tissue toward an anti-inflammatory and pro-resolving lipid profile that counteracts peripheral sensitization after paclitaxel treatment. Furthermore, SAFit2 reduced the activation of astrocytes and microglia in the spinal cord as well as the levels of pain-mediating chemokines. Its treatment also increased anti-inflammatory cytokines levels in neuronal tissues, ultimately leading to a resolution of neuroinflammation. CONCLUSIONS In summary, SAFit2 shows antihyperalgesic properties as it ameliorates paclitaxel-induced neuropathic pain by reducing peripheral sensitization and resolving neuroinflammation. Therefore, we consider SAFit2 as a potential novel drug candidate for the treatment of paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Saskia Wedel
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Christian Namendorf
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Tim Heymann
- Department of Biochemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Manfred Uhr
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Mathias V Schmidt
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Natasja de Bruin
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Felix Hausch
- Department of Biochemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Bernatoniene J, Sciupokas A, Kopustinskiene DM, Petrikonis K. Novel Drug Targets and Emerging Pharmacotherapies in Neuropathic Pain. Pharmaceutics 2023; 15:1799. [PMID: 37513986 PMCID: PMC10384314 DOI: 10.3390/pharmaceutics15071799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain is a debilitating condition characterized by abnormal signaling within the nervous system, resulting in persistent and often intense sensations of pain. It can arise from various causes, including traumatic nerve injury, neuropathy, and certain diseases. We present an overview of current and emerging pharmacotherapies for neuropathic pain, focusing on novel drug targets and potential therapeutic agents. Current pharmacotherapies, including tricyclic antidepressants, gabapentinoids, and serotonin norepinephrine re-uptake inhibitors, are discussed, as are emerging treatments, such as ambroxol, cannabidiol, and N-acetyl-L-cysteine. Additionally, the article highlights the need for further research in this field to identify new targets and develop more effective and targeted therapies for neuropathic pain management.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Arunas Sciupokas
- Pain Clinic, Lithuanian University of Health Sciences Hospital Kauno Klinikos, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| |
Collapse
|
11
|
Bilal W, Khawar MB, Afzal A, Naseer A, Hamid SE, Shahzaman S, Qamar F. Recent advances to Neuroprotection: repurposing drugs against neuroinflammatory disorders. Mol Biol Rep 2023:10.1007/s11033-023-08490-6. [PMID: 37231215 DOI: 10.1007/s11033-023-08490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Cell death is a natural mechanism for biological clearance for the maintenance of homeostasis in a dynamic microenvironment of the central nervous system. Stress and various factors can lead to imbalance between cellular genesis and cell death leading to dysfunctionality and a number of neuropathological disorders. Drug repurposing can help bypass development time and cost. A complete understanding of drug actions and neuroinflammatory pathways can lead to effective control of neurodegenerative disorders. This review covers recent advances in various neuroinflammatory pathways understanding, biomarkers, and drug repurposing for neuroprotection.
Collapse
Affiliation(s)
- Wishah Bilal
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences & Technology, University of Central Punjab, Lahore, Pakistan
| | - Arshia Naseer
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences & Technology, University of Central Punjab, Lahore, Pakistan
| | - Sara Shahzaman
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences & Technology, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
12
|
Petroianu GA, Aloum L, Adem A. Neuropathic pain: Mechanisms and therapeutic strategies. Front Cell Dev Biol 2023; 11:1072629. [PMID: 36727110 PMCID: PMC9884983 DOI: 10.3389/fcell.2023.1072629] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
The physiopathology and neurotransmission of pain are of an owe inspiring complexity. Our ability to satisfactorily suppress neuropathic or other forms of chronic pain is limited. The number of pharmacodynamically distinct and clinically available medications is low and the successes achieved modest. Pain Medicine practitioners are confronted with the ethical dichotomy imposed by Hippocrates: On one hand the mandate of primum non nocere, on the other hand, the promise of heavenly joys if successful divinum est opus sedare dolorem. We briefly summarize the concepts associated with nociceptive pain from nociceptive input (afferents from periphery), modulatory output [descending noradrenergic (NE) and serotoninergic (5-HT) fibers] to local control. The local control is comprised of the "inflammatory soup" at the site of pain origin and synaptic relay stations, with an ATP-rich environment promoting inflammation and nociception while an adenosine-rich environment having the opposite effect. Subsequently, we address the transition from nociceptor pain to neuropathic pain (independent of nociceptor activation) and the process of sensitization and pain chronification (transient pain progressing into persistent pain). Having sketched a model of pain perception and processing we attempt to identify the sites and modes of action of clinically available drugs used in chronic pain treatment, focusing on adjuvant (co-analgesic) medication.
Collapse
|
13
|
Drug repurposing – A search for novel therapy for the treatment of diabetic neuropathy. Biomed Pharmacother 2022; 156:113846. [DOI: 10.1016/j.biopha.2022.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
|
14
|
The FKBP51 Inhibitor SAFit2 Restores the Pain-Relieving C16 Dihydroceramide after Nerve Injury. Int J Mol Sci 2022; 23:ijms232214274. [PMID: 36430751 PMCID: PMC9695264 DOI: 10.3390/ijms232214274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Neuropathic pain is a pathological pain state with a broad symptom scope that affects patients after nerve injuries, but it can also arise after infections or exposure to toxic substances. Current treatment possibilities are still limited because of the low efficacy and severe adverse effects of available therapeutics, highlighting an emerging need for novel analgesics and for a detailed understanding of the pathophysiological alterations in the onset and maintenance of neuropathic pain. Here, we show that the novel and highly specific FKBP51 inhibitor SAFit2 restores lipid signaling and metabolism in nervous tissue after nerve injury. More specifically, we identify that SAFit2 restores the levels of the C16 dihydroceramide, which significantly reduces the sensitization of the pain-mediating TRPV1 channel and subsequently the secretion of the pro-inflammatory neuropeptide CGRP in primary sensory neurons. Furthermore, we show that the C16 dihydroceramide is capable of reducing acute thermal hypersensitivity in a capsaicin mouse model. In conclusion, we report for the first time the C16 dihydroceramide as a novel and crucial lipid mediator in the context of neuropathic pain as it has analgesic properties, contributing to the pain-relieving properties of SAFit2.
Collapse
|
15
|
Xue Y, Kremer M, Muniz Moreno MDM, Chidiac C, Lorentz R, Birling MC, Barrot M, Herault Y, Gaveriaux-Ruff C. The Human SCN9AR185H Point Mutation Induces Pain Hypersensitivity and Spontaneous Pain in Mice. Front Mol Neurosci 2022; 15:913990. [PMID: 35769334 PMCID: PMC9234669 DOI: 10.3389/fnmol.2022.913990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The voltage-gated sodium channel Nav1.7 is encoded by SCN9A gene and plays a critical role in pain sensitivity. Several SCN9A gain-of-function (GOF) mutations have been found in patients with small fiber neuropathy (SFN) having chronic pain, including the R185H mutation. However, for most of these variants, their involvement in pain phenotype still needs to be experimentally elucidated. In order to delineate the impact of R185H mutation on pain sensitivity, we have established the Scn9aR185H mutant mouse model using the CRISPR/Cas9 technology. The Scn9aR185H mutant mice show no cellular alteration in the dorsal root ganglia (DRG) containing cell bodies of sensory neurons and no alteration of growth or global health state. Heterozygous and homozygous animals of both sexes were investigated for pain sensitivity. The mutant mice were more sensitive than the wild-type mice in the tail flick and hot plate tests, acetone, and von Frey tests for sensitivity to heat, cold, and touch, respectively, although with sexual dimorphic effects. The newly developed bioinformatic pipeline, Gdaphen is based on general linear model (GLM) and random forest (RF) classifiers as well as a multifactor analysis of mixed data and shows the qualitative and quantitative variables contributing the most to the pain phenotype. Using Gdaphen, tail flick, Hargreaves, hot plate, acetone, cold plate, and von Frey tests, sex and genotype were found to be contributing most to the pain phenotype. Importantly, the mutant animals displayed spontaneous pain as assessed in the conditioned place preference (CPP) assay. Altogether, our results indicate that Scn9aR185H mice show a pain phenotype, suggesting that the SCN9AR185H mutation identified in patients with SFN having chronic pain contributes to their symptoms. Therefore, we provide genetic evidence for the fact that this mutation in Nav1.7 channel plays an important role in nociception and in the pain experienced by patients with SFN who have this mutation. These findings should aid in exploring further pain treatments based on the Nav1.7 channel.
Collapse
Affiliation(s)
- Yaping Xue
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Mélanie Kremer
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Cellulaires et Intégratives (INCI), Université de Strasbourg, Strasbourg, France
| | - Maria del Mar Muniz Moreno
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Celeste Chidiac
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Romain Lorentz
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), CELPHEDIA-PHENOMIN-Institut Clinique de la Souris, (PHENOMIN-ICS), Université de Strasbourg, Illkirch, France
| | - Marie-Christine Birling
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), CELPHEDIA-PHENOMIN-Institut Clinique de la Souris, (PHENOMIN-ICS), Université de Strasbourg, Illkirch, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Cellulaires et Intégratives (INCI), Université de Strasbourg, Strasbourg, France
| | - Yann Herault
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), CELPHEDIA-PHENOMIN-Institut Clinique de la Souris, (PHENOMIN-ICS), Université de Strasbourg, Illkirch, France
- *Correspondence: Yann Herault,
| | - Claire Gaveriaux-Ruff
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7242, Université de Strasbourg, Illkirch, France
- Claire Gaveriaux-Ruff,
| |
Collapse
|