1
|
Humphrey D, Kelly J, Rosario ER, Keller Johnson T, Lubetzky AV. Moving Sounds Increase Postural Visual Dependence in Adults With Chronic Traumatic Brain Injury. J Neurol Phys Ther 2025:01253086-990000000-00098. [PMID: 40333609 DOI: 10.1097/npt.0000000000000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
BACKGROUND AND PURPOSE This cross-sectional study aimed to (1) establish the safety and tolerability of head-mounted display (HMD) assessment of sensory integration for postural control in participants with chronic traumatic brain injury (TBI); (2) investigate whether responses to visual and auditory cues differ between persons with TBI and healthy controls; and (3) evaluate the relationship between postural responses, postural visual dependence, and self-reported perception of disability. METHODS 20 healthy adults and 19 participants with TBI completed an HMD assessment of with visual and auditory perturbations. Head sway was quantified as a directional path in the anteroposterior and mediolateral directions. Participants also completed the Simulator Sickness Questionnaire (SSQ) and the Dizziness Handicap Inventory (DHI). RESULTS All participants completed testing. The average change in SSQ scores from pre to post postural control assessment was 0.8 points for healthy controls and 3.2 points for participants with TBI. Head sway in the TBI group was consistently higher in both directions, especially with dynamic visuals. In addition, a significant sound by visual by group interaction in the mediolateral direction indicates that participants with TBI responded more to the visual perturbations when sounds were present. Under the most challenging conditions, people with mild-to-moderate dizziness handicap showed little head sway, while those with severe symptoms were more variable. DISCUSSION AND CONCLUSIONS HMD assessment of participants with TBI is feasible and provides a clinic-based assessment of postural visual dependence in this population. This assessment carries the potential to evaluate postural control and monitor progress of participants with TBI.
Collapse
Affiliation(s)
- Daniel Humphrey
- Casa Colina Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, California (D.H., E.R.R., T.K.J.); Vestibular Rehabilitation, New York Eye and Ear Infirmary of Mount Sinai, New York, New York (J.K.); Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York (J.K.).; Department of Physical Therapy, College Health Sciences, Western University of Health Sciences, Pomona, California (T.K.J.); and Department of Physical Therapy, Steinhardt School of Culture, Education and Human Development, New York University, New York, New York (A.V.L.)
| | | | | | | | | |
Collapse
|
2
|
Zheng DKY, Sun Z, Chang JR, Huang FF, Liu Y, Yu S, Wu J, Wang Z, Wong AYL, Wang X. Poor Sleep Quality Worsens Static and Dynamic Balance Control in Individuals With Chronic Low Back Pain: A Cross-Sectional Study. Pain Res Manag 2025; 2025:5224748. [PMID: 40040750 PMCID: PMC11876524 DOI: 10.1155/prm/5224748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Objective: To investigate the influence of sleep quality and associated factors on balance control in individuals with chronic low back pain (CLBP). Methods: 85 participants (mean age 33.2 ± 12.5 years) with CLBP were recruited. Physical and emotional well-beings were evaluated using a battery of questionnaires. Sleep quality over the last month was assessed using the Pittsburgh Sleep Quality Index (PSQI). Participants were dichotomized into the good sleep quality (GSQ) and poor sleep quality (PSQ) groups if their PSQI scores were ≤ 5 and > 5, respectively. Balance control was measured using the one-leg stance with eyes closed and Y-balance test. Results: The GSQ group included 37 participants, while the PSQ group comprised 48 participants. After controlling for confounds (including gender, age, disability, anxiety, depression, and fear avoidance beliefs), participants with PSQ displayed significantly poorer performance in the one-leg stance with eyes closed and lower normalized posteromedial, posterolateral, and composite scores of the Y-balance test compared with participants with GSQ. Additionally, sleep quality accounted for 16.9%-24.9% of the variance in balance control, while age explained an additional 5.2%-13.2% of the variance. Additionally, higher levels of physical disability and anxiety were associated with poorer balance control. Conclusions: Individuals with concurrent CLBP and PSQ exhibit significantly worse balance control than those with CLBP alone. Future studies should investigate whether improving sleep quality, physical disability, and anxiety can enhance balance in individuals with CLBP.
Collapse
Affiliation(s)
- Daniel K. Y. Zheng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Zhihan Sun
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Sport Medicine, Sichuan Province Orthopedic Hospital, Chengdu, China
| | - Jeremy R. Chang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Frank F. Huang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yilin Liu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Siying Yu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jinlong Wu
- College of Physical Education, Southwest University, Chongqing, China
| | - Zimeng Wang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Arnold Y. L. Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xueqiang Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Edwards GC, Bruggeman AE, Fogt N, Onate JA, Bliss RA, Quatman-Yates CC, Caccese JB. Test-Retest Reliability and Reliable Change Estimates for Sensorimotor Concussion Assessments in Healthy Young Adults. J Sport Rehabil 2025:1-10. [PMID: 39832500 DOI: 10.1123/jsr.2024-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 01/22/2025]
Abstract
CONTEXT Sensorimotor impairments are common sequela following concussion, but recovery following a concussion is often determined through examiner scored clinical testing. There are emerging technologies that provide objective methods to determine physiological impairment after concussion, but the psychometrics of these tools are lacking and must be established for use in clinical practice. OBJECTIVE The purpose of this study was to examine the test-retest reliability and provide reliable change estimates in healthy young adults for outcomes from 3 emerging technologies providing objective assessments of sensorimotor function in healthy young adults. DESIGN Test-retest reliability design in a laboratory setting. METHODS Healthy, young adults completed testing at 2 time points 4 weeks apart on the Bertec Vision Trainer, the Concussion Balance Test (COBALT), and the Neurolign Dx-100 eye-tracking system. We determined test-retest reliability using intraclass correlation coefficients with a 2-way mixed-effects model absolute agreement. Reliable change estimates were calculated for 70%, 80%, 90%, and 95% CIs. RESULTS Participants included 30 healthy young adults (age = 25 [5] y, interquartile range = 20-29; range = 18-38; 17% [57%] women). Test-retest reliability for the Bertec Vision Trainer outcomes ranged from 0.56 to 0.88, with 45% of the outcomes being classified as clinically acceptable (>.70 intraclass correlation coefficients ); for COBALT conditions, sway velocity ranged from 0.50 to 0.95, 95% ellipse area ranged from -0.22 to 0.88, and Sway Score ranged from 0.07 to 0.85, with 50% of COBALT metrics being clinically acceptable; and for the Dx-100, outcomes ranged from -0.20 to 0.89, with 52% being clinically acceptable. CONCLUSIONS Overall, test-retest reliability was moderate-to-good for the Bertec Vision Trainer assessment outcomes but were highly variable for outcomes of postural control using the COBALT and eye-tracking metrics using the Dx-100. This study adds clinically relevant test-retest reliability and reliable change estimates in healthy adults for 3 commercially available sensorimotor assessments.
Collapse
Affiliation(s)
- Gregory C Edwards
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Alex E Bruggeman
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nick Fogt
- College of Optometry, The Ohio State University, Columbus, OH, USA
| | - James A Onate
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Rebecca A Bliss
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Catherine C Quatman-Yates
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Jaclyn B Caccese
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Truong DQ, Thomas C, Ira S, Valter Y, Clark TK, Datta A. Unpacking Galvanic Vestibular Stimulation using simulations and relating current flow to reported motions: Comparison across common and specialized electrode placements. PLoS One 2024; 19:e0309007. [PMID: 39186497 PMCID: PMC11346646 DOI: 10.1371/journal.pone.0309007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/04/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Galvanic Vestibular Stimulation (GVS) is a non-invasive electrical stimulation technique that is typically used to probe the vestibular system. When using direct current or very low frequency sine, GVS causes postural sway or perception of illusory (virtual) motions. GVS is commonly delivered using two electrodes placed at the mastoids, however, placements involving additional electrodes / locations have been employed. Our objective was to systematically evaluate all known GVS electrode placements, compare induced current flow, and how it relates to the archetypal sway and virtual motions. The ultimate goal is to help users in having a better understanding of the effects of different placements. METHODS We simulated seven GVS electrode placements with same total injected current using an ultra-high resolution model. Induced electric field (EF) patterns at the cortical and the level of vestibular organs (left and right) were determined. A range of current flow metrics including potential factors such as inter-electrode separation, percentage of current entering the cranial cavity, and symmetricity were calculated. Finally, we relate current flow to reported GVS motions. RESULTS As expected, current flow patterns are electrode placement specific. Placements with two electrodes generally result in higher EF magnitude. Placements with four electrodes result in lower percentage of current entering the cranial cavity. Symmetric placements do not result in similar EF values in the left and the right organs respectively- highlighting inherent anatomical asymmetry of the human head. Asymmetric placements were found to induce as much as ~3-fold higher EF in one organ over the other. The percentage of current entering the cranial cavity varies between ~15% and ~40% depending on the placement. CONCLUSIONS We expect our study to advance understanding of GVS and provide insight on probable mechanism of action of a certain electrode placement choice. The dataset generated across several metrics will support hypothesis testing relating empirical outcomes to current flow patterns. Further, the differences in current flow will guide stimulation strategy (what placement and how much scalp current to use) and facilitate a quantitatively informed rational / optimal decision.
Collapse
Affiliation(s)
- Dennis Q. Truong
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Chris Thomas
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Sanjidah Ira
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Yishai Valter
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Torin K. Clark
- Smead Aerospace Engineering Sciences Department, College of Engineering and Applied Science, University of Colorado, Boulder, Colorado, United States of America
| | - Abhishek Datta
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
- Biomedical Engineering, City College of New York, New York, New York, United States of America
| |
Collapse
|
5
|
Keshavarz B, Adams MS, Gabriel G, Sergio LE, Campos JL. Concussion can increase the risk of visually induced motion sickness. Neurosci Lett 2024; 830:137767. [PMID: 38599370 DOI: 10.1016/j.neulet.2024.137767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Concussion can lead to various symptoms such as balance problems, memory impairments, dizziness, and/or headaches. It has been previously suggested that during self-motion relevant tasks, individuals with concussion may rely heavily on visual information to compensate for potentially less reliable vestibular inputs and/or problems with multisensory integration. As such, concussed individuals may also be more sensitive to other visually-driven sensations such as visually induced motion sickness (VIMS). To investigate whether concussed individuals are at elevated risk of experiencing VIMS, we exposed participants with concussion (n = 16) and healthy controls (n = 15) to a virtual scene depicting visual self-motion down a grocery store aisle at different speeds. Participants with concussion were further separated into symptomatic and asymptomatic groups. VIMS was measured with the SSQ before and after stimulus exposure, and visual dependence, self-reported dizziness, and somatization were recorded at baseline. Results showed that concussed participants who were symptomatic demonstrated significantly higher SSQ scores after stimulus presentation compared to healthy controls and those who were asymptomatic. Visual dependence was positively correlated with the level of VIMS in healthy controls and participants with concussion. Our results suggest that the presence of concussion symptoms at time of testing significantly increased the risk and severity of VIMS. This finding is of relevance with regards to the use of visual display devices such as Virtual Reality applications in the assessment and rehabilitation of individuals with concussion.
Collapse
Affiliation(s)
- Behrang Keshavarz
- KITE Research Institute, Toronto Rehab-University Health Network, Toronto, Canada; Department of Psychology, Toronto Metropolitan University, Toronto, Canada.
| | - Meaghan S Adams
- KITE Research Institute, Toronto Rehab-University Health Network, Toronto, Canada; Baycrest Health Sciences, Toronto, Canada
| | - Grace Gabriel
- KITE Research Institute, Toronto Rehab-University Health Network, Toronto, Canada; Department of Psychology, University of Toronto, Canada
| | - Lauren E Sergio
- Centre for Vision Research, York University, Toronto, Canada
| | - Jennifer L Campos
- KITE Research Institute, Toronto Rehab-University Health Network, Toronto, Canada; Department of Psychology, University of Toronto, Canada; Centre for Vision Research, York University, Toronto, Canada
| |
Collapse
|
6
|
Harper BA, Soangra R. Assessing Brain Processing Deficits Using Neuropsychological and Vision-Specific Tests for Concussion. Sports (Basel) 2024; 12:125. [PMID: 38786994 PMCID: PMC11125887 DOI: 10.3390/sports12050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Since verbal memory and visual processing transpire within analogous cerebral regions, this study assessed (i) if a visual function can predict verbal memory performance. It also hypothesized whether neurocognitive (e.g., ImPACT) tests focusing on the Visual Memory and Cognitive Efficacy Index will predict Verbal Memory scores and (ii) if vision metrics and age can identify individuals with a history of concussion. Finally, it also hypothesized that King-Devick and near point of convergence scores alongside age considerations will identify candidates with a prior reported history of concussion. MATERIALS AND METHODS This observational cohort assessed 25 collegiate ice hockey players prior to the competitive season considering age (19.76 ± 1.42 years) and BMI (25.9 ± 3.0 kg/cm2). Hypothesis 1 was assessed using a hierarchical (sequential) multiple regression analysis, assessing the predictive capacity of Visual Memory and Cognitive Efficacy Index scores in relation to Verbal Memory scores. Hypothesis 2 utilized a binomial logistic regression to determine if King-Devick and near point of convergence scores predict those with a prior history of concussion. RESULTS Hypothesis 1 developed two models, where Model 1 included Visual Memory as the predictor, while Model 2 added the Cognitive Efficacy Index as a predictor for verbal memory scores. Model 1 significantly explained 41% of the variance. Results from Model 2 suggest that the Cognitive Efficacy Index explained an additional 24.4%. Thus, Model 2 was interpreted where only the Cognitive Efficacy Index was a significant predictor (p = 0.001). For every 1 unit increase in the Cognitive Efficacy Index, Verbal Memory increased by 41.16. Hypothesis 2's model was significant, accounting for 37.9% of the variance in those with a history of concussion. However, there were no significant unique predictors within the model as age (Wald = 1.26, p = 0.261), King-Devick (Wald = 2.31, p = 0.128), and near point of convergence (Wald = 2.43, p = 0.119) were not significant predictors individually. CONCLUSIONS The conflicting findings of this study indicate that baseline data for those with a history of concussion greater than one year may not be comparable to the same metrics during acute concussion episodes. Young athletes who sustain a concussion may be able to overcompensate via the visual system. Future prospective studies with larger sample sizes are required using the proposed model's objective metrics.
Collapse
Affiliation(s)
- Brent A. Harper
- Department of Physical Therapy, Crean College of Health and Behavioral Sciences, Chapman University, Irvine, CA 92618, USA;
- Department of Physical Therapy, Radford University, Roanoke, VA 24013, USA
| | - Rahul Soangra
- Department of Physical Therapy, Crean College of Health and Behavioral Sciences, Chapman University, Irvine, CA 92618, USA;
- Fowler School of Engineering, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
7
|
Bertrand-Charette M, Perron MP, da Silva RA, Beaulieu LD. Vibration-induced postural reactions: a scoping review on parameters and populations studied. Front Hum Neurosci 2024; 17:1307639. [PMID: 38234593 PMCID: PMC10791994 DOI: 10.3389/fnhum.2023.1307639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Objective Mechanical vibration is an effective way for externally activating Ia primary endings of the muscle spindles and skin mechanoreceptors. Despite its popularity in proprioception and postural control studies, there is still no review covering the wide variety of vibration parameters or locations used in studies. The main purpose of this scoping review was thus to give an overview of general vibration parameters and to identify, if available, the rationale for justifying methodological choices concerning vibration parameters. Methods Three databases (Pubmed, CINHAL, and SPORTDiscus) were searched from inception to July 2022. Included articles were to focus on the study of muscle spindles and skin mechanoreceptors vibration in humans and assess postural control. Following inclusion, data regarding demographic information, populations, vibration parameters and rationale were extracted and summarized. Results One hundred forty-seven articles were included, mostly targeting lower extremities (n = 137) and adults (n = 126). The parameters used varied widely but were most often around 80 Hz, at an amplitude of 1 mm for 10-20 s. Regarding rationales, nearly 50% of the studies did not include any, whereas those including one mainly cited the same two studies, without elaborating specifically on the parameter's choice. Conclusion This scoping review provided a comprehensive description of the population recruited and parameters used for vibration protocols in current studies with humans. Despite many studies, there remain important gaps of knowledge that needs to be filled, especially for vibration amplitude and duration parameters in various populations.
Collapse
Affiliation(s)
- Michaël Bertrand-Charette
- BioNR Research Lab, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Département des Sciences de la Santé, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi (UQAC), Saguenay, QC, Canada
| | - Marie-Pier Perron
- BioNR Research Lab, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Département des Sciences de la Santé, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi (UQAC), Saguenay, QC, Canada
| | - Rubens A. da Silva
- BioNR Research Lab, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Département des Sciences de la Santé, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi (UQAC), Saguenay, QC, Canada
- Centre Intégré de Santé et Services Sociaux du Saguenay—Lac-Saint-Jean (CIUSSS SLSJ), Specialized Geriatrics Services–La Baie Hospital, Saguenay, QC, Canada
| | - Louis-David Beaulieu
- BioNR Research Lab, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Département des Sciences de la Santé, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi (UQAC), Saguenay, QC, Canada
| |
Collapse
|
8
|
McLoughlin J. Concussion Rehabilitation and the Application of Ten Movement Training Principles. Cureus 2023; 15:e46520. [PMID: 37927640 PMCID: PMC10625311 DOI: 10.7759/cureus.46520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Concussion awareness continues to grow in all aspects of healthcare, including the areas of prevention, acute care, and ongoing rehabilitation. Most of the concussion research to date has focussed on the challenges around screening and diagnosing what can be a complex mix of brain impairments that overlay with additional pre-existing comorbidities. While we expect further progress in concussion diagnosis, progress also continues to be made around proactive rehabilitation, with the emergence of interventions that can enhance the recovery process, maximise function and independence with a return to study, work, and play. Traditionally, optimal multimodal assessments of concussion have treated the physical, cognitive, and psychological domains of brain injury separately, which supports diagnosis, and informs appropriate follow-up care. Due to the complex nature of brain injury, multimodal assessments direct care toward professionals from many different disciplines including medicine, physiotherapy, psychology, neuropsychology, ophthalmology, and exercise physiology. In addition, these professionals may work in different fields such as sports, neurorehabilitation, vestibular, musculoskeletal, community, vocational, and general practice clinical settings. Rehabilitation interventions for concussions employed in practice are also likely to use a blend of theoretical principles from motor control, cognitive, and psychological sciences. This scale of diversity can make information dissemination, collaboration, and innovation challenging. The Ten Movement Training Principles (MTPs) have been proposed as a usable and relevant concept to guide and support clinical reasoning in neurorehabilitation. When applied to concussion rehabilitation, these same 10 principles provide a comprehensive overview of key rehabilitation strategies for current and future practice. Future collaborations can use these training principles to support clinical and research innovations including the rapid rise of technologies in this growing field of rehabilitation practice.
Collapse
Affiliation(s)
- James McLoughlin
- College of Nursing and Health Sciences, Flinders University, Adelaide, AUS
| |
Collapse
|
9
|
Belhassen S, Mat Q, Ferret C, Clavel R, Renaud B, Cabaraux P. Post-Traumatic Craniocervical Disorders From a Postural Control Perspective: A Narrative Review. BRAIN & NEUROREHABILITATION 2023; 16:e15. [PMID: 37554255 PMCID: PMC10404808 DOI: 10.12786/bn.2023.16.e15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023] Open
Abstract
Mild traumatic brain injury (mTBI) and whiplash injury (WI) may lead to long-term disabling consequences known as post-concussive syndrome (PCS) and whiplash-associated disorders (WADs). PCS and WAD patients commonly complain of conditions encompassing dizziness, vertigo, headache, neck pain, visual complaints, anxiety, and neurocognitive dysfunctions. A proper medical work-up is a priority in order to rule out any acute treatable consequences. However investigations may remain poorly conclusive. Gathered in the head and neck structures, the ocular sensorimotor, the vestibular, and the cervical proprioceptive systems, all involved in postural control, may be damaged by mTBI or WI. Their dysfunctions are associated with a wide range of functional disorders including symptoms reported by PCS and WAD patients. In addition, the stomatognathic system needs to be specifically assessed particularly when associated to WI. Evidence for considering the post-traumatic impairment of these systems in PCS and WAD-related symptoms is still lacking but seems promising. Furthermore, few studies have considered the assessment and/or treatment of these widely interconnected systems from a comprehensive perspective. We argue that further research focusing on consequences of mTBI and WI on the systems involved in the postural control are necessary in order to bring new perspective of treatment.
Collapse
Affiliation(s)
- Serge Belhassen
- Groupe d'Etudes, de Recherche, d'Information et de Formation sur les Activités Posturo-Cinétiques (Gerifap), Juvignac, France
| | - Quentin Mat
- Department of Otorhinolaryngology, Centre Hospitalier Universitaire (CHU) Charleroi, Charleroi, Belgium
| | - Claude Ferret
- Departments of Oral Health Sciences and Otorhinolaryngology, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
| | - Robert Clavel
- Groupe d'Etudes, de Recherche, d'Information et de Formation sur les Activités Posturo-Cinétiques (Gerifap), Juvignac, France
| | - Bernard Renaud
- Groupe d'Etudes, de Recherche, d'Information et de Formation sur les Activités Posturo-Cinétiques (Gerifap), Juvignac, France
| | | |
Collapse
|
10
|
Corrigan F, Wee IC, Collins-Praino LE. Chronic motor performance following different traumatic brain injury severity-A systematic review. Front Neurol 2023; 14:1180353. [PMID: 37288069 PMCID: PMC10243142 DOI: 10.3389/fneur.2023.1180353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Traumatic brain injury (TBI) is now known to be a chronic disease, causing ongoing neurodegeneration and linked to increased risk of neurodegenerative motor diseases, such as Parkinson's disease and amyotrophic lateral sclerosis. While the presentation of motor deficits acutely following traumatic brain injury is well-documented, however, less is known about how these evolve in the long-term post-injury, or how the initial severity of injury affects these outcomes. The purpose of this review, therefore, was to examine objective assessment of chronic motor impairment across the spectrum of TBI in both preclinical and clinical models. Methods PubMed, Embase, Scopus, and PsycINFO databases were searched with a search strategy containing key search terms for TBI and motor function. Original research articles reporting chronic motor outcomes with a clearly defined TBI severity (mild, repeated mild, moderate, moderate-severe, and severe) in an adult population were included. Results A total of 97 studies met the inclusion criteria, incorporating 62 preclinical and 35 clinical studies. Motor domains examined included neuroscore, gait, fine-motor, balance, and locomotion for preclinical studies and neuroscore, fine-motor, posture, and gait for clinical studies. There was little consensus among the articles presented, with extensive differences both in assessment methodology of the tests and parameters reported. In general, an effect of severity was seen, with more severe injury leading to persistent motor deficits, although subtle fine motor deficits were also seen clinically following repeated injury. Only six clinical studies investigated motor outcomes beyond 10 years post-injury and two preclinical studies to 18-24 months post-injury, and, as such, the interaction between a previous TBI and aging on motor performance is yet to be comprehensively examined. Conclusion Further research is required to establish standardized motor assessment procedures to fully characterize chronic motor impairment across the spectrum of TBI with comprehensive outcomes and consistent protocols. Longitudinal studies investigating the same cohort over time are also a key for understanding the interaction between TBI and aging. This is particularly critical, given the risk of neurodegenerative motor disease development following TBI.
Collapse
Affiliation(s)
- Frances Corrigan
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ing Chee Wee
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Lyndsey E. Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
11
|
Brancaleone MP, Talarico MK, Boucher LC, Yang J, Merfeld D, Onate JA. Hearing Status and Static Postural Control of Collegiate Athletes. J Athl Train 2023; 58:452-457. [PMID: 35984719 PMCID: PMC11220902 DOI: 10.4085/1062-6050-0262.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Because of the close proximity of the cochlea, vestibular apparatus, and shared neurovascular structures, the static postural control of athletes who are deaf or hard of hearing (D/HoH) may be different from that of athletes who are hearing. Limited research is available to quantify differences between these athletes. OBJECTIVE To determine the effect of hearing status and stance condition on the static postural control of athletes. DESIGN Cross-sectional study. SETTING Athletic training facilities. PATIENTS OR OTHER PARTICIPANTS Fifty-five collegiate varsity athletes who were D/HoH (age = 20.62 ± 1.80 years, height = 1.73 ± 0.08 m, mass = 80.34 ± 18.92 kg) and 100 university club athletes who were hearing (age = 20.11 ± 1.59 years, height = 1.76 ± 0.09 m, mass = 77.66 ± 14.37 kg). MAIN OUTCOME MEASURE(S) Participants completed the Modified Clinical Test of Sensory Interaction and Balance on a triaxial force plate. Anteroposterior and mediolateral (ML) center-of-pressure (CoP) velocity, anteroposterior and ML CoP amplitude root mean square, and 95% ellipse sway area were calculated. RESULTS Athletes who were D/HoH had a larger CoP velocity, larger ML root mean square, and larger sway area than those who were hearing (P values < .01). A significant main effect of stance condition was observed for all postural control variables (P values < .01). CONCLUSIONS During the Modified Clinical Test of Sensory Interaction and Balance, athletes who were D/HoH demonstrated a larger sway area compared with athletes who were hearing. Therefore, individualized baseline assessments of static postural control may be warranted for athletes who are D/HoH as opposed to comparisons with existing normative data.
Collapse
Affiliation(s)
| | - Maria K. Talarico
- DEVCOM Analysis Center, Human Systems Integration Division–Weapons Branch, US Army Futures Command, Aberdeen Proving Ground, MD
| | - Laura C. Boucher
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus
- Jameson Crane Sports Medicine Institute, The Ohio State University, Columbus
| | - Jingzhen Yang
- Center for Injury Research and Policy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Daniel Merfeld
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus
- Department of Otolaryngology–Head and Neck Surgery, The Ohio State University, Columbus
| | - James A. Onate
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus
- Jameson Crane Sports Medicine Institute, The Ohio State University, Columbus
| |
Collapse
|
12
|
Lippi V, Maurer C, Mergner T. Human body-sway steady-state responses to small amplitude tilts and translations of the support surface - Effects of superposition of the two stimuli. Gait Posture 2023; 100:139-148. [PMID: 36521258 DOI: 10.1016/j.gaitpost.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND For humans, control of upright standing posture is a prerequisite for many physical activities. Experimentally, this control is often challenged by the motion of the support surface presented as tilt or translation, or some combination thereof. In particular, we have investigated subjects balancing in situations where tilt and translation stimuli were presented in isolation and compared it to a situation where such stimuli occurred simultaneously. RESEARCH QUESTIONS Is the human posture control system in the case of two or more superimposed external disturbances responding to these as if it were dealing with one disturbance? Or does it identify the disturbances individually and as such and respond to them specifically, as suggested in a current concept of disturbance-specific estimations and compensations? METHODS We had healthy human subjects controlling their balancing of upright stance on a motion platform while we presented them with different combinations of pseudorandom support surface tilt and translation stimuli alone or in superposition (with peak-to-peak amplitude of 0.5° and 1° for tilt, and 0.8 cm and 1.5 cm for translation). In one set of trials they kept their eyes closed and in a second set open. Furthermore, a simulation was performed to qualitatively evaluate the impact of sensory non-linearities and joint stiffness modulation. RESULTS We found that the experimental conditions 'eyes open' vs. 'eyes closed' always created significant differences (p < 0.05) between the frequency response functions. In contrast to this, with different combinations of the tilt and translation stimuli, significant differences between the responses were observed only in 5 cases over the 24 that have been tested. Significance The superposition of translation and tilt can be used to characterize the responses to both stimuli with one trial. When the amplitude of the stimuli is unbalanced (e.g. very small tilt superimposed with a larger translation) the effect of stiffness modulation can be studied.
Collapse
Affiliation(s)
- Vittorio Lippi
- Institute of Digitalization in Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.
| | - Christoph Maurer
- Clinic of Neurology and Neurophysiology, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Thomas Mergner
- Clinic of Neurology and Neurophysiology, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
13
|
Campbell KR, King LA, Parrington L, Fino PC, Antonellis P, Peterka RJ. Central sensorimotor integration assessment reveals deficits in standing balance control in people with chronic mild traumatic brain injury. Front Neurol 2022; 13:897454. [PMID: 36341095 PMCID: PMC9634071 DOI: 10.3389/fneur.2022.897454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Imbalance is common following mild Traumatic Brain Injury (mTBI) and can persist months after the initial injury. To determine if mTBI subjects with chronic imbalance differed from healthy age- and sex-matched controls (HCs) we used both the Central SensoriMotor Integration (CSMI) test, which evaluates sensory integration, time delay, and motor activation properties and the standard Sensory Organization Test (SOT). Four CSMI conditions evoked center-of-mass sway in response to: surface tilts with eyes closed (SS/EC), surface tilts with eyes open viewing a fixed visual surround (SS/EO), visual surround tilts with eyes open standing on a fixed surface (VS/EO), and combined surface and visual tilts with eyes open (SS+VS/EO). The mTBI participants relied significantly more on visual cues during the VS/EO condition compared to HCs but had similar reliance on combinations of vestibular, visual, and proprioceptive cues for balance during SS/EC, SS/EO, and SS+VS/EO conditions. The mTBI participants had significantly longer time delays across all conditions and significantly decreased motor activation relative to HCs across conditions that included surface-tilt stimuli with a sizeable subgroup having a prominent increase in time delay coupled with reduced motor activation while demonstrating no vestibular sensory weighting deficits. Decreased motor activation compensates for increased time delay to maintain stability of the balance system but has the adverse consequence that sensitivity to both internal (e.g., sensory noise) and external disturbances is increased. Consistent with this increased sensitivity, SOT results for mTBI subjects showed increased sway across all SOT conditions relative to HCs with about 45% of mTBI subjects classified as having an “Aphysiologic” pattern based on published criteria. Thus, CSMI results provided a plausible physiological explanation for the aphysiologic SOT pattern. Overall results suggest that rehabilitation that focuses solely on sensory systems may be incomplete and may benefit from therapy aimed at enhancing rapid and vigorous responses to balance perturbations.
Collapse
Affiliation(s)
- Kody R. Campbell
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, United States
- *Correspondence: Kody R. Campbell
| | - Laurie A. King
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, United States
| | - Lucy Parrington
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, United States
- Department of Dietetics, Human Nutrition and Sport, La Trobe University, Melbourne, VIC, Australia
| | - Peter C. Fino
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, United States
| | - Prokopios Antonellis
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Robert J. Peterka
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
14
|
Fino PC, Dibble LE, Wilde EA, Fino NF, Johnson P, Cortez MM, Hansen CR, van der Veen SM, Skop KM, Werner JK, Tate DF, Levin HS, Pugh MJV, Walker WC. Sensory Phenotypes for Balance Dysfunction After Mild Traumatic Brain Injury. Neurology 2022; 99:e521-e535. [PMID: 35577572 PMCID: PMC9421603 DOI: 10.1212/wnl.0000000000200602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Recent team-based models of care use symptom subtypes to guide treatments of individuals with chronic effects of mild traumatic brain injury (mTBI). However, these subtypes, or phenotypes, may be too broad, particularly for balance (e.g., vestibular subtype). To gain insight into mTBI-related imbalance, we (1) explored whether a dominant sensory phenotype (e.g., vestibular impaired) exists in the chronic mTBI population, (2) determined the clinical characteristics, symptomatic clusters, functional measures, and injury mechanisms that associate with sensory phenotypes for balance control in this population, and (3) compared the presentations of sensory phenotypes between individuals with and without previous mTBI. METHODS A secondary analysis was conducted on the Long-Term Impact of Military-Relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium. Sensory ratios were calculated from the sensory organization test, and individuals were categorized into 1 of the 8 possible sensory phenotypes. Demographic, clinical, and injury characteristics were compared across phenotypes. Symptoms, cognition, and physical function were compared across phenotypes, groups, and their interaction. RESULTS Data from 758 Service Members and Veterans with mTBI and 172 individuals with no lifetime history of mTBI were included. Abnormal visual, vestibular, and proprioception ratios were observed in 29%, 36%, and 38% of people with mTBI, respectively, with 32% exhibiting more than 1 abnormal sensory ratio. Within the mTBI group, global outcomes (p < 0.001), self-reported symptom severity (p < 0.027), and nearly all physical and cognitive functioning tests (p < 0.027) differed across sensory phenotypes. Individuals with mTBI generally reported worse symptoms than their non-mTBI counterparts within the same phenotype (p = 0.026), but participants with mTBI in the vestibular-deficient phenotype reported lower symptom burdens than their non-mTBI counterparts (e.g., mean [SD] Dizziness Handicap Inventory = 4.9 [8.1] for mTBI vs 12.8 [12.4] for non-mTBI, group × phenotype interaction p < 0.001). Physical and cognitive functioning did not differ between the groups after accounting for phenotype. DISCUSSION Individuals with mTBI exhibit a variety of chronic balance deficits involving heterogeneous sensory integration problems. While imbalance when relying on vestibular information is common, it is inaccurate to label all mTBI-related balance dysfunction under the vestibular umbrella. Future work should consider specific classification of balance deficits, including specific sensory phenotypes for balance control.
Collapse
Affiliation(s)
- Peter C Fino
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA.
| | - Leland E Dibble
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA
| | - Elisabeth A Wilde
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA
| | - Nora F Fino
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA.
| | - Paula Johnson
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA
| | - Melissa M Cortez
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA
| | - Colby R Hansen
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA
| | - Susanne M van der Veen
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA
| | - Karen M Skop
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA
| | - J Kent Werner
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA
| | - David F Tate
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA
| | - Harvey S Levin
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA
| | - Mary Jo V Pugh
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA
| | - William C Walker
- From the Departments of Health & Kinesiology (P.C.F.), and Physical Therapy and Athletic Training (L.E.D.), University of Utah; George E. Wahlen VA Salt Lake City Healthcare System (E.A.W., D.F.T.); Department of Neurology (E.A.W., P.J., M.M.C., D.F.T.), University of Utah, Salt Lake City; H. Ben Taub Department of Physical Medicine and Rehabilitation (E.A.W., H.S.L.), Baylor College of Medicine, Houston, TX; Division of Epidemiology (N.F.F.), Department of Internal Medicine, and Department of Physical Medicine and Rehabilitation (C.R.H.), University of Utah, Salt Lake City; Department of Physical Therapy (S.M.v.d.V.), Virginia Commonwealth University, Richmond; Department of Physical Medicine & Rehabilitation Services (K.M.S.), James A. Haley Veterans' Hospital; Department of Physical Therapy (K.M.S.), Morsani College of Medicine, University of South Florida, Tampa, FL; Center for Neuroscience and Regenerative Medicine (CNRM) (J.K.W.), and Department of Neurology (J.K.W.), Uniformed Services University, Bethesda, MD; Department of Medicine (M.J.V.P.), University of Utah School of Medicine, Salt Lake City; Information Decision-Enhancement and Analytic Sciences Center (M.J.V.P.), VA Salt Lake City, UT; Department of Physical Medicine and Rehabilitation (W.C.W.), Virginia Commonwealth University, Richmond; and Hunter Holmes McGuire Veterans Affairs Medical Center (W.C.W.), Richmond, VA
| |
Collapse
|
15
|
van der Veen SM, Perera RA, Manning-Franke L, Agyemang AA, Skop K, Sponheim SR, Wilde EA, Stamenkovic A, Thomas JS, Walker WC. Executive function and relation to static balance metrics in chronic mild TBI: A LIMBIC-CENC secondary analysis. Front Neurol 2022; 13:906661. [PMID: 36712459 PMCID: PMC9874327 DOI: 10.3389/fneur.2022.906661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Among patients with traumatic brain injury (TBI), postural instability often persists chronically with negative consequences such as higher fall risk. One explanation may be reduced executive function (EF) required to effectively process, interpret and combine, sensory information. In other populations, a decline in higher cognitive functions are associated with a decline in walking and balance skills. Considering the link between EF decline and reduction in functional capacity, we investigated whether specific tests of executive function could predict balance function in a cohort of individuals with a history of chronic mild TBI (mTBI) and compared to individuals with a negative history of mTBI. Methods Secondary analysis was performed on the local LIMBIC-CENC cohort (N = 338, 259 mTBI, mean 45 ± STD 10 age). Static balance was assessed with the sensory organization test (SOT). Hierarchical regression was used for each EF test outcome using the following blocks: (1) the number of TBIs sustained, age, and sex; (2) the separate Trail making test (TMT); (3) anti-saccade eye tracking items (error, latency, and accuracy); (4) Oddball distractor stimulus P300 and N200 at PZ and FZ response; and (5) Oddball target stimulus P300 and N200 at PZ and FZ response. Results The full model with all predictors accounted for between 15.2% and 21.5% of the variability in the balance measures. The number of TBI's) showed a negative association with the SOT2 score (p = 0.002). Additionally, longer times to complete TMT part B were shown to be related to a worse SOT1 score (p = 0.038). EEG distractors had the most influence on the SOT3 score (p = 0.019). Lastly, the SOT-composite and SOT5 scores were shown to be associated with longer inhibition latencies and errors (anti-saccade latency and error, p = 0.026 and p = 0.043 respectively). Conclusions These findings show that integration and re-weighting of sensory input when vision is occluded or corrupted is most related to EF. This indicates that combat-exposed Veterans and Service Members have greater problems when they need to differentiate between cues when vision is not a reliable input. In sum, these findings suggest that EF could be important for interpreting sensory information to identify balance challenges in chronic mTBI.
Collapse
Affiliation(s)
- Susanne M van der Veen
- Department of Physical Therapy, College of Health Professions, Virginia Commonwealth University, Richmond, VA, United States.,Department of Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Robert A Perera
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States
| | - Laura Manning-Franke
- Department of Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Amma A Agyemang
- Department of Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Karen Skop
- Department of Physical Medicine and Rehabilitation Services, James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Veterans Affairs Medical Center, Minneapolis, MN, United States.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Elisabeth A Wilde
- Department of Physical Medicine and Rehabilitation, Michael E. DeBakey VA Medical Center, Houston, TX, United States.,Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Alexander Stamenkovic
- Department of Physical Therapy, College of Health Professions, Virginia Commonwealth University, Richmond, VA, United States
| | - James S Thomas
- Department of Physical Therapy, College of Health Professions, Virginia Commonwealth University, Richmond, VA, United States
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Richmond Veterans Affairs (VA) Medical Center, Central Virginia VA Health Care System, Richmond, VA, United States
| |
Collapse
|