1
|
Shaalan AAM, Al Ageeli E, Kattan SW, Almars AI, Babteen NA, Sindi AAA, Toraih EA, Fawzy MS, Mohamed MH. Impacts of DROSHA (rs10719) and DICER (rs3742330) Variants on Breast Cancer Risk and Their Distribution in Blood and Tissue Samples of Egyptian Patients. Curr Issues Mol Biol 2024; 46:10087-10111. [PMID: 39329954 PMCID: PMC11430749 DOI: 10.3390/cimb46090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression and play critical roles in tumorigenesis. Genetic variants in miRNA processing genes, DROSHA and DICER, have been implicated in cancer susceptibility and progression in various populations. However, their role in Egyptian patients with breast cancer (BC) remains unexplored. This study aims to investigate the association of DROSHA rs10719 and DICER rs3742330 polymorphisms with BC risk and clinical outcomes. This case-control study included 209 BC patients and 106 healthy controls. Genotyping was performed using TaqMan assays in blood, tumor tissue, and adjacent non-cancerous tissue samples. Associations were analyzed using logistic regression and Fisher's exact test. The DROSHA rs10719 AA genotype was associated with a 3.2-fold increased risk (95%CI = 1.23-9.36, p < 0.001), and the DICER rs3742330 GG genotype was associated with a 3.51-fold increased risk (95%CI = 1.5-8.25, p = 0.001) of BC. Minor allele frequencies were 0.42 for rs10719 A and 0.37 for rs3742330 G alleles. The risk alleles were significantly more prevalent in tumor tissue than adjacent normal tissue (rs10719 A: 40.8% vs. 0%; rs3742330 G: 42.7% vs. 0%; p < 0.001). However, no significant associations were observed with clinicopathological features or survival outcomes over a median follow-up of 17 months. In conclusion, DROSHA rs10719 and DICER rs3742330 polymorphisms are associated with increased BC risk and more prevalent in tumor tissue among our cohort, suggesting a potential role in miRNA dysregulation during breast tumorigenesis. These findings highlight the importance of miRNA processing gene variants in BC susceptibility and warrant further validation in larger cohorts and different ethnic populations.
Collapse
Affiliation(s)
- Aly A. M. Shaalan
- Department of Anatomy, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Essam Al Ageeli
- Department of Basic Medical Sciences, Faculty of Medicine, Jazan University, Jazan 45141, Saudi Arabia;
| | - Shahad W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46423, Saudi Arabia;
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nouf A. Babteen
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia;
| | - Abdulmajeed A. A. Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65779, Saudi Arabia;
| | - Eman A. Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91341, Saudi Arabia
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia
| | - Marwa Hussein Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
2
|
Toraih EA, Hussein MH, Al Ageeli E, Ellaban M, Kattan SW, Moroz K, Fawzy MS, Kandil E. Matrix Metalloproteinase 9/microRNA-145 Ratio: Bridging Genomic and Immunological Variabilities in Thyroid Cancer. Biomedicines 2023; 11:2953. [PMID: 38001954 PMCID: PMC10669161 DOI: 10.3390/biomedicines11112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Matrix metalloproteinase 9 (MMP9) and microRNA-145 (miR-145) have emerged as essential biomarkers in thyroid cancer progression and metastasis. However, their combined evaluation and clinical utility as a unified prognostic marker across diverse thyroid cancer subgroups remain unexplored. We investigated the diagnostic and prognostic value of the MMP9/miR-145 ratio in thyroid cancer, hypothesizing it may overcome inter-patient heterogeneity and serve as a versatile biomarker regardless of genetic mutations or autoimmune status. MMP9 and miR-145 expressions were analyzed in 175 paired papillary thyroid cancer (PTC) and normal tissues. Plasma levels were assessed perioperatively and longitudinally over 12-18 months in 86 matched PTC patients. The associations with clinicopathological parameters and patient outcomes were evaluated. MMP9 was upregulated, and miR-145 downregulated in cancer tissues, with a median MMP9/miR-145 ratio 17.6-fold higher versus controls. The tissue ratio accurately diagnosed thyroid malignancy regardless of BRAF mutation or Hashimoto's thyroiditis status, overcoming genetic and autoimmune heterogeneity. A high preoperative circulating ratio predicted aggressive disease features, including lymph node metastasis, extrathyroidal extension, progression/relapse, and recurrence. Although the preoperative plasma ratio was elevated in patients with unfavorable outcomes, it had limited utility for post-surgical monitoring. In conclusion, the MMP9/miR-145 ratio is a promising biomarker in PTC that bridges genetic and immunological variabilities, enhancing preoperative diagnosis and prognostication across diverse patient subgroups. It accurately stratifies heterogenous cases by aggressiveness. The longitudinal trends indicate decreasing applicability for post-thyroidectomy surveillance. Further large-scale validation and protocol standardization can facilitate clinical translation of the MMP9/miR-145 ratio to guide personalized thyroid cancer management.
Collapse
Affiliation(s)
- Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (M.H.H.); (E.K.)
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (M.H.H.); (E.K.)
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohamad Ellaban
- Faculty of Medicine, Port Said University, Port Said 42526, Egypt;
| | - Shahd W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia;
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (M.H.H.); (E.K.)
| |
Collapse
|
3
|
El-Toukhy SE, El-Daly SM, Kamel MM, Nabih HK. The diagnostic significance of circulating miRNAs and metabolite profiling in early prediction of breast cancer in Egyptian women. J Cancer Res Clin Oncol 2023; 149:5437-5451. [PMID: 36459290 PMCID: PMC10349790 DOI: 10.1007/s00432-022-04492-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Breast cancer (BC) is one of the most commonly diagnosed solid malignancies in women worldwide. PURPOSE Finding new non-invasive circulating diagnostic biomarkers will facilitate the early prediction of BC and provide valuable insight into disease progression and response to therapy using a safe and more accessible approach available every inspection time. Therefore, our present study aimed to investigate expression patterns of potentially circulating biomarkers that can differentiate well between benign, malignant, and healthy subjects. METHODS To achieve our target, quantitative analyses were performed for some circulating biomarkers which have a role in the proliferation and tumor growth, as well as, glutamic acid, and human epidermal growth receptor 2 (HER2) in blood samples of BC patients in comparison to healthy controls using qRT-PCR, liquid chromatography/mass spectrometry (LC/MS/MS), and ELISA. RESULTS Our findings showed that the two miRNAs (miRNA-145, miRNA-382) were expressed at lower levels in BC sera than healthy control group, while miRNA-21 was expressed at higher levels in BC patients than control subjects. Area under ROC curves of BC samples revealed that AUC of miRNA-145, miRNA-382, miRNA-21, and glutamic acid was evaluated to equal 0.99, 1.00, 1.00 and 1.00, respectively. Besides, there was a significantly positive correlation between miRNA-145 and miRNA-382 (r = 0.737), and a highly significant positive correlation between miRNA-21 and glutamic acid (r = 0.385). CONCLUSION Based on our results, we conclude that the detection of serum miRNA-145, -382 and -21 as a panel along with glutamic acid, and circulating HER2 concentrations could be useful as a non-invasive diagnostic profiling for early prediction of breast cancer in Egyptian patients. It can provide an insight into disease progression, discriminate between malignancy and healthy control, and overcome the use limitations (low sensitivity and specificity, repeated risky exposure, and high cost) of other detecting tools, including mammography, magnetic resonance imaging, and ultrasound.
Collapse
Affiliation(s)
- Safinaz E El-Toukhy
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth st., Dokki, P.O. 12622, Giza, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth st., Dokki, P.O. 12622, Giza, Egypt
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Mahmoud M Kamel
- Laboratory Department, Baheya Hospital for Early Detection and Treatment of Breast Cancer, National Cancer Institute, Cairo University, Giza, Egypt
| | - Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth st., Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
4
|
Toraih EA, Ruiz E, Ning B, Tortelote GG, Hilliard S, Moroz K, Hu T, Fawzy MS, Kandil E. Chromatin-Accessible miRNA Regulons Driving Thyroid Tumorigenesis and Progression. J Am Coll Surg 2023; 236:732-750. [PMID: 36728308 DOI: 10.1097/xcs.0000000000000541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Although papillary thyroid cancer can remain indolent, associated lymph node metastases and recurrence rates are approximately 50% and 20%, respectively. Omics-based medicine has led to the discovery of predictive biomarkers that can be used to predict tumor progression and clinical outcomes. We aimed to develop a noninvasive omics-driven blood test to allow accurate risk stratification and help tailor individual patient treatment plans. STUDY DESIGN RNA sequencing (seq) and microRNA analysis of The Cancer Genome Atlas and Gene Expression Omnibus datasets were employed to identify an epigenetic prognostic panel. Integrated bulk assay for transposase-accessible chromatin-seq and RNA-seq experiments confirmed the results. Sixty-two paired tumor and adjacent control thyroid tissues and 67 blood samples (62 papillary thyroid cancer and 5 controls) were analyzed for validation using sequencing and real-time polymerase chain reaction and correlated to clinical outcomes. A liposome-exosome fusion clustered regularly interspaced short palindromic repeats (CRISPR)-fluorescent detection system miRNA assay was developed. A predictive risk nomogram was generated and tested for performance. RESULTS Our miRNA panel (miR-146b-5p and miR-221-3p) from tissue and blood was associated with aggressive features and was located within accessible chromatin regions. The miRNA risk score and prognostic nomogram showed higher accuracy in predicting lymph node metastases (miR-146b: area under the curve [AUC] 0.816, sensitivity 76.9%; miR-221: AUC 0.740, sensitivity 79.5%) and recurrence (miR-146b: AUC 0.921, sensitivity 75.0%; miR-221: AUC 0.756, sensitivity 70.0%; p < 0.001) than staging and American Thyroid Association risk stratification. CRISPR-based miRNA assays showed upregulation in the blood of cancer cohorts. CONCLUSIONS CRISPR-based detection of miR-146b and miR-221 in the blood of thyroid cancer patients is a reliable and noninvasive tool for real-time assessment and prognostication that has great potential to provide a direct impact on the care of these patients.
Collapse
Affiliation(s)
- Eman A Toraih
- From the Division of General Endocrine and Oncologic Surgery, Department of Surgery (Toraih, Kandil), Tulane University School of Medicine, New Orleans, LA
- the Medical Genetics Unit, Department of Histology and Cell Biology (Toraih); Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, and Suez Canal University, Ismailia, Egypt
| | - Emmanuelle Ruiz
- the Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA (Ruiz)
| | - Bo Ning
- Department of Biochemistry and Molecular Biology (Ning, Hu), Tulane University School of Medicine, New Orleans, LA
| | - Giovane G Tortelote
- Section of Pediatric Nephrology, Department of Pediatrics (Tortelote, Hilliard), Tulane University School of Medicine, New Orleans, LA
| | - Sylvia Hilliard
- Section of Pediatric Nephrology, Department of Pediatrics (Tortelote, Hilliard), Tulane University School of Medicine, New Orleans, LA
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine (Moroz), Tulane University School of Medicine, New Orleans, LA
| | - Tony Hu
- Department of Biochemistry and Molecular Biology (Ning, Hu), Tulane University School of Medicine, New Orleans, LA
| | - Manal S Fawzy
- the Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia (Fawzy)
| | - Emad Kandil
- From the Division of General Endocrine and Oncologic Surgery, Department of Surgery (Toraih, Kandil), Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
5
|
Ageeli EA, Attallah SM, Mohamed MH, Almars AI, Kattan SW, Toraih EA, Fawzy MS, Darwish MK. Migration/Differentiation-Associated LncRNA SENCR rs12420823*C/T: A Novel Gene Variant Can Predict Survival and Recurrence in Patients with Breast Cancer. Genes (Basel) 2022; 13:1996. [PMID: 36360233 PMCID: PMC9690295 DOI: 10.3390/genes13111996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 09/04/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have key roles in tumor development and the progress of many cancers, including breast cancer (BC). This study aimed to explore for the first time the association of the migration/differentiation-associated lncRNA SENCR rs12420823C/T variant with BC risk and prognosis. Genotyping was carried out for 203 participants (110 patients and 93 controls) using the TaqMan allelic discrimination technique. The corresponding clinicopathological data, including the recurrence/survival times, were analyzed with the different genotypes. After adjustment by age and risk factors, the T/T genotype carrier patients were more likely to develop BC under homozygote comparison (T/T vs. C/C: OR = 8.33, 95% CI = 2.44-25.0, p = 0.001), dominant (T/T-C/T vs. C/C: OR = 3.70, 95% CI = 1.72-8.33, p = 0.027), and recessive (T/T vs. C/T-C/C: OR = 2.17, 95% CI = 1.08-4.55, p < 0.001) models. Multivariate logistic regression analysis showed that the T/T genotype carriers were more likely to be triple-negative sub-type (OR = 2.66, 95% CI = 1.02-6.95, p = 0.046), at a higher risk of recurrence (OR = 3.57, 95% CI = 1.33-9.59, p = 0.012), and had short survival times (OR = 3.9, 95% CI = 1.52-10.05, p = 0.005). Moreover, Cox regression analysis supported their twofold increased risk of recurrence (HR = 2.14, 95% CI = 1.27-3.59, p = 0.004). Furthermore, the predictive nomogram confirmed the high weight for SENCR rs12420823*T/T and C/T genotypes in predicting recurrence within the first year. The Kaplan-Meier survival curve demonstrated low disease-free survival (T/T: 12.5 ± 1.16 months and C/T: 15.9 ± 0.86 months versus C/C: 22.3 ± 0.61 months, p < 0.001). In conclusion, the LncRNA SENCR rs12420823*C/T may be associated with an increased risk of BC in women and could be a promising genetic variant for predicting recurrence and survival.
Collapse
Affiliation(s)
- Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Samy M. Attallah
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Clinical Pathology, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Marwa Hussein Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shahad W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Marwa K. Darwish
- Chemistry Department (Biochemistry Branch), Faculty of Science, Suez University, Ismailia 41522, Egypt
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwaiiyah 19257, Saudi Arabia
| |
Collapse
|
6
|
A critical review of datasets and computational suites for improving cancer theranostics and biomarker discovery. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:206. [PMID: 36175717 DOI: 10.1007/s12032-022-01815-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 10/14/2022]
Abstract
Cancer has been constantly evolving and so is the research pertaining to cancer diagnosis and therapeutic regimens. Early detection and specific therapeutics are the key features of modern cancer therapy. These requirements can only be fulfilled with the integration of diverse high-throughput technologies. Integration of advanced omics methodology involving genomics, epigenomics, proteomics, and transcriptomics provide a clear understanding of multi-faceted cancer. In the past few years, tremendous high-throughput data have been generated from cancer genomics and epigenomic analyses, which on further methodological analyses can yield better biological insights. The major epigenetic alterations reported in cancer are DNA methylation levels, histone post-translational modifications, and epi-miRNA regulating the oncogenes and tumor suppressor genes. While the genomic analyses like gene expression profiling, cancer gene prediction, and genome annotation divulge the genetic alterations in oncogenes or tumor suppressor genes. Also, systems biology approach using biological networks is being extensively used to identify novel cancer biomarkers. Therefore, integration of these multi-dimensional approaches will help to identify potential diagnostic and therapeutic biomarkers. Here, we reviewed the critical databases and tools dedicated to various epigenomic and genomic alterations in cancer. The review further focuses on the multi-omics resources available for further validating the identified cancer biomarkers. We also highlighted the tools for cancer biomarker discovery using a systems biology approach utilizing genomic and epigenomic data. Biomarkers predicted using such integrative approaches are shown to be more clinically relevant.
Collapse
|
7
|
A Review and In Silico Analysis of Tissue and Exosomal Circular RNAs: Opportunities and Challenges in Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14194728. [PMID: 36230649 PMCID: PMC9564022 DOI: 10.3390/cancers14194728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Thyroid cancer is the most common endocrine neoplasm. Recently, knowledge of the molecular genetic changes of thyroid cancer has dramatically improved. Understanding the roles of these molecular changes in thyroid cancer tumorigenesis and progression is essential in developing a successful treatment strategy and improving disease outcomes. As a family of non-coding RNAs, circular RNAs (circRNAs) have been involved in several aspects of the physiological and pathological processes of the cells. The roles of circRNAs in cancer development and progress are evident. In the current review, we aimed to explore the clinical potential of circRNAs as potential diagnostic, prognostic, and therapeutic targets in thyroid cancer. Furthermore, screening the genome-wide circRNAs and performing functional enrichment analyses for all associated dysregulated circRNAs in thyroid cancer have been done. Given the unique advantages circRNAs have, such as superior stability, higher abundance, and presence in different body fluids, this family of non-coding RNAs could be promising diagnostic and prognostic biomarkers and potential therapeutic targets for thyroid cancer. Abstract Thyroid cancer (TC) is the most common endocrine tumor. The genetic and epigenetic molecular alterations of TC have become more evident in recent years. However, a deeper understanding of the roles these molecular changes play in TC tumorigenesis and progression is essential in developing a successful treatment strategy and improving patients’ prognoses. Circular RNAs (circRNAs), a family of non-coding RNAs, have been implicated in several aspects of carcinogenesis in multiple cancers, including TC. In the current review, we aimed to explore the clinical potential of circRNAs as putative diagnostic, prognostic, and therapeutic targets in TC. The current analyses, including genome-wide circRNA screening and functional enrichment for all deregulated circRNA expression signatures, show that circRNAs display atypical contributions, such as sponging for microRNAs, regulating transcription and translation processes, and decoying for proteins. Given their exceptional clinical advantages, such as higher stability, wider abundance, and occurrence in several body fluids, circRNAs are promising prognostic and theranostic biomarkers for TC.
Collapse
|
8
|
Nguyen THN, Nguyen TTN, Nguyen TTM, Nguyen LHM, Huynh LH, Phan HN, Nguyen HT. Panels of circulating microRNAs as potential diagnostic biomarkers for breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 2022; 196:1-15. [DOI: 10.1007/s10549-022-06728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
|
9
|
Ismail Y, Fahmy DM, Ghattas MH, Ahmed MM, Zehry W, Saleh SM, Abo-elmatty DM. Integrating experimental model, LC-MS/MS chemical analysis, and systems biology approach to investigate the possible antidiabetic effect and mechanisms of Matricaria aurea (Golden Chamomile) in type 2 diabetes mellitus. Front Pharmacol 2022; 13:924478. [PMID: 36160451 PMCID: PMC9490514 DOI: 10.3389/fphar.2022.924478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a heterogeneous disease with numerous abnormal targets and pathways involved in insulin resistance, low-grade inflammation, oxidative stress, beta cell dysfunction, and epigenetic factors. Botanical drugs provide a large chemical space that can modify various targets simultaneously. Matricaria aurea (MA, golden chamomile) is a widely used herb in Middle Eastern communities for many ailments, including diabetes mellitus, without any scientific basis to support this tradition. For the first time, this study aimed to investigate the possible antidiabetic activity of MA in a type 2 diabetic rat model, identify chemical constituents by LC-MS/MS, and then elucidate the molecular mechanism(s) using enzyme activity assays, q-RTPCR gene expression analysis, network pharmacology analysis, and molecular docking simulation. Our results demonstrated that only the polar hydroethanolic extract of MA had remarkable antidiabetic activity. Furthermore, it improved dyslipidemia, insulin resistance status, ALT, and AST levels. LC-MS/MS analysis of MA hydroethanolic extract identified 62 compounds, including the popular chamomile flavonoids apigenin and luteolin, other flavonoids and their glycosides, coumarin derivatives, and phenolic acids. Based on pharmacokinetic screening and literature, 46 compounds were chosen for subsequent network analysis, which linked to 364 candidate T2DM targets from various databases and literature. The network analysis identified 123 hub proteins, including insulin signaling and metabolic proteins: IRS1, IRS2, PIK3R1, AKT1, AKT2, MAPK1, MAPK3, and PCK1, inflammatory proteins: TNF and IL1B, antioxidant enzymes: CAT and SOD, and others. Subsequent filtering identified 40 crucial core targets (major hubs) of MA in T2DM treatment. Functional enrichment analyses of the candidate targets revealed that MA targets were mainly involved in the inflammatory module, energy-sensing/endocrine/metabolic module, and oxidative stress module. q-RTPCR gene expression analysis showed that MA hydroethanolic extract was able to significantly upregulate PIK3R1 and downregulate IL1B, PCK1, and MIR29A. Moreover, the activity of the antioxidant hub enzymes was substantially increased. Molecular docking scores were also consistent with the networks’ predictions. Based on experimental and computational analysis, this study revealed for the first time that MA exerted antidiabetic action via simultaneous modulation of multiple targets and pathways, including inflammatory pathways, energy-sensing/endocrine/metabolic pathways, and oxidative stress pathways.
Collapse
Affiliation(s)
- Yassin Ismail
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
- *Correspondence: Yassin Ismail,
| | - Dina M. Fahmy
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Maivel H. Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Mai M. Ahmed
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Walaa Zehry
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samy M. Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M. Abo-elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
10
|
Toraih EA, Fawzy MS, Ning B, Zerfaoui M, Errami Y, Ruiz EM, Hussein MH, Haidari M, Bratton M, Tortelote GG, Hilliard S, Nilubol N, Russell JO, Shama MA, El-Dahr SS, Moroz K, Hu T, Kandil E. A miRNA-Based Prognostic Model to Trace Thyroid Cancer Recurrence. Cancers (Basel) 2022; 14:cancers14174128. [PMID: 36077665 PMCID: PMC9454675 DOI: 10.3390/cancers14174128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Some thyroid tumors elected for surveillance remain indolent, while others progress. The mechanism responsible for this difference is poorly understood, making it challenging to devise patient surveillance plans. Early prediction is important for tailoring treatment and follow-up in high-risk patients. The aim of our study was to identify predictive markers for progression. We leveraged a highly sensitive test that accurately predicts which thyroid nodules are more likely to develop lymph node metastasis, thereby improving care and outcomes for cancer patients. Abstract Papillary thyroid carcinomas (PTCs) account for most endocrine tumors; however, screening and diagnosing the recurrence of PTC remains a clinical challenge. Using microRNA sequencing (miR-seq) to explore miRNA expression profiles in PTC tissues and adjacent normal tissues, we aimed to determine which miRNAs may be associated with PTC recurrence and metastasis. Public databases such as TCGA and GEO were utilized for data sourcing and external validation, respectively, and miR-seq results were validated using quantitative real-time PCR (qRT-PCR). We found miR-145 to be significantly downregulated in tumor tissues and blood. Deregulation was significantly related to clinicopathological features of PTC patients including tumor size, lymph node metastasis, TNM stage, and recurrence. In silico data analysis showed that miR-145 can negatively regulate multiple genes in the TC signaling pathway and was associated with cell apoptosis, proliferation, stem cell differentiation, angiogenesis, and metastasis. Taken together, the current study suggests that miR-145 may be a biomarker for PTC recurrence. Further mechanistic studies are required to uncover its cellular roles in this regard.
Collapse
Affiliation(s)
- Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +1-346-907-4237
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar P.O. Box 1321, Saudi Arabia
| | - Bo Ning
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Mourad Zerfaoui
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Youssef Errami
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Emmanuelle M. Ruiz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Muhib Haidari
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Melyssa Bratton
- Biospecimen Core Laboratory, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Giovane G. Tortelote
- Section of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Sylvia Hilliard
- Section of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Naris Nilubol
- Endocrine Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20814, USA
| | - Jonathon O. Russell
- Division of Head and Neck Endocrine Surgery, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins, Baltimore, MD 21287, USA
| | - Mohamed A. Shama
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Samir S. El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Tony Hu
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Liu X, Papukashvili D, Wang Z, Liu Y, Chen X, Li J, Li Z, Hu L, Li Z, Rcheulishvili N, Lu X, Ma J. Potential utility of miRNAs for liquid biopsy in breast cancer. Front Oncol 2022; 12:940314. [PMID: 35992785 PMCID: PMC9386533 DOI: 10.3389/fonc.2022.940314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) remains the most prevalent malignancy due to its incidence rate, recurrence, and metastasis in women. Conventional strategies of cancer detection– mammography and tissue biopsy lack the capacity to detect the complete cancer genomic landscape. Besides, they often give false- positive or negative results. The presence of this and other disadvantages such as invasiveness, high-cost, and side effects necessitates developing new strategies to overcome the BC burden. Liquid biopsy (LB) has been brought to the fore owing to its early detection, screening, prognosis, simplicity of the technique, and efficient monitoring. Remarkably, microRNAs (miRNAs)– gene expression regulators seem to play a major role as biomarkers detected in the samples of LB. Particularly, miR-21 and miR-155 among other possible candidates seem to serve as favorable biomarkers in the diagnosis and prognosis of BC. Hence, this review will assess the potential utility of miRNAs as biomarkers and will highlight certain promising candidates for the LB approach in the diagnosis and management of BC that may optimize the patient outcome.
Collapse
Affiliation(s)
- Xiangrong Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhixiang Wang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yan Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoxia Chen
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jianrong Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhiyuan Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Linjie Hu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zheng Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoqing Lu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaoqing Lu, ; Jinfeng Ma,
| | - Jinfeng Ma
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaoqing Lu, ; Jinfeng Ma,
| |
Collapse
|
12
|
Qiu X, Tang H, Dong J, Wang C, Li Y. Stochastic Collision Electrochemistry from Single Pt Nanoparticles: Electrocatalytic Amplification and MicroRNA Sensing. Anal Chem 2022; 94:8202-8208. [PMID: 35642339 DOI: 10.1021/acs.analchem.2c00116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-particle collisions have made many achievements in basic research, but challenges still exist due to their low collision frequency and selectivity in complex samples. In this work, we developed an "on-off-on" strategy based on Pt nanoparticles (PtNPs) that catalyze N2H4 collision signals on the surface of carbon ultramicroelectrodes and established a new method for the detection of miRNA21 with high selectivity and sensitivity. PtNPs catalyze the reduction of N2H4 on the surface of carbon ultramicroelectrodes to generate a stepped collision signal, which is in the "on" state. The single-stranded DNA paired with miRNA21 is coupled with PtNPs to form the complex DNA/PtNPs. Because PtNPs are covered by DNA, the electrocatalytic collision of N2H4 oxidation is inhibited. At this time, the signal is in the "off" state. When miRNA21 is added, the strong complementary pairing between miRNA21 and DNA destroys the electrostatic adsorption of DNA/PtNP conjugates and restores the electrocatalytic performance of PtNPs, and the signal is in the "on" state again. Based on this, a new method for detecting miRNA21 was established. It provides a new way for small-molecule sensing and has a wide range of applications in electroanalysis, electrocatalysis, and biosensing.
Collapse
Affiliation(s)
- Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Jingyi Dong
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Chaohui Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| |
Collapse
|
13
|
MicroRNA 21 and microRNA 10b: early diagnostic biomarkers of breast cancer in Egyptian females. J Egypt Natl Canc Inst 2022; 34:16. [PMID: 35399150 DOI: 10.1186/s43046-022-00115-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the most prevalent cancers in developing and developed countries among women worldwide. Mammography is one of the superior methods for BC detection, but it carries up to 20% false-negative results, especially in early cases. Histological examination of tissue biopsies and fine-needle aspiration cytology are invasive techniques. Hence, minimally invasive markers are needed for the improved detection of BC. microRNAs, small, noncoding, single-stranded RNAs functioning as tumor suppressor genes or oncogenes, are attractive biomarkers for early detection. This study aimed to examine the serum levels of miR21 and miR10b in patients with BC especially in the early stages compared to healthy controls to evaluate their potential use as BC biomarkers. METHODS This study included 90 females who were divided into two groups. Group I included 70 patients with BC and was subdivided into group Ia with 40 nonmetastatic BC patients and group Ib with 30 metastatic BC patients. Group II included 20 apparently healthy females as a control group. Serum miR21 and miR10b as biomarkers and miR16 as a housekeeping gene were evaluated using real-time polymerase chain reaction. RESULTS The median levels of miR10b and miR21 were statistically significantly upregulated in the sera of patients with BC compared to healthy controls (P = 0.001). Receiver operating characteristic curve analyses demonstrated that serum levels of miR10b and miR21 were useful biomarkers for distinguishing between patients with BC and the control group, with an area under the curve (AUC) of 0.991 with 97.1% sensitivity and 100% specificity at a cutoff of 3.1 for miR10b and an AUC of 0.965 with 95.7% sensitivity and 85% specificity at a cutoff of 1.7 for miR21. Regarding the early stages of BC, the median levels of the fold change of serum miR21 and miR10b were statistically significantly higher in patients with BC (stages I and IIa) than in the control group (P < 0.001). CONCLUSIONS Both miR21 and miR10b have valuable diagnostic roles in detecting the early stages of BC.
Collapse
|
14
|
MicroRNA-Based Risk Score for Predicting Tumor Progression Following Radioactive Iodine Ablation in Well-Differentiated Thyroid Cancer Patients: A Propensity-Score Matched Analysis. Cancers (Basel) 2021; 13:cancers13184649. [PMID: 34572876 PMCID: PMC8468667 DOI: 10.3390/cancers13184649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The three-tiered American Thyroid Association (ATA) risk stratification helps clinicians tailor decisions regarding follow-up modalities and the need for postoperative radioactive iodine (RAI) ablation and radiotherapy. However, a significant number of well-differentiated thyroid cancers (DTC) progress after treatment. Current follow-up modalities have also been proposed to detect disease relapse and recurrence but have failed to be sufficiently sensitive or specific to detect, monitor, or determine progression. Therefore, we assessed the predictive accuracy of the microRNA-based risk score in DTC with and without postoperative RAI. We confirm the prognostic role of triad biomarkers (miR-2f04, miR-221, and miR-222) with higher sensitivity and specificity for predicting disease progression than the ATA risk score. Compared to indolent tumors, a higher risk score was found in progressive samples and was associated with shorter survival. Consequently, our prognostic microRNA signature and nomogram provide a clinically practical and reliable ancillary measure to determine the prognosis of DTC patients. Abstract To identify molecular markers that can accurately predict aggressive tumor behavior at the time of surgery, a propensity-matching score analysis of archived specimens yielded two similar datasets of DTC patients (with and without RAI). Bioinformatically selected microRNAs were quantified by qRT-PCR. The risk score was generated using Cox regression and assessed using ROC, C-statistic, and Brier-score. A predictive Bayesian nomogram was established. External validation was performed, and causal network analysis was generated. Within the eight-year follow-up period, progression was reported in 51.5% of cases; of these, 48.6% had the T1a/b stage. Analysis showed upregulation of miR-221-3p and miR-222-3p and downregulation of miR-204-5p in 68 paired cancer tissues (p < 0.001). These three miRNAs were not differentially expressed in RAI and non-RAI groups. The ATA risk score showed poor discriminative ability (AUC = 0.518, p = 0.80). In contrast, the microRNA-based risk score showed high accuracy in predicting tumor progression in the whole cohorts (median = 1.87 vs. 0.39, AUC = 0.944) and RAI group (2.23 vs. 0.37, AUC = 0.979) at the cutoff >0.86 (92.6% accuracy, 88.6% sensitivity, 97% specificity) in the whole cohorts (C-statistics = 0.943/Brier = 0.083) and RAI subgroup (C-statistic = 0.978/Brier = 0.049). The high-score group had a three-fold increased progression risk (hazard ratio = 2.71, 95%CI = 1.86–3.96, p < 0.001) and shorter survival times (17.3 vs. 70.79 months, p < 0.001). Our prognostic microRNA signature and nomogram showed excellent predictive accuracy for progression-free survival in DTC.
Collapse
|
15
|
Raghu A, Magendhra Rao AKD, Rajkumar T, Mani S. Prognostic Implications of microRNA-155, -133a, -21 and -205 in Breast Cancer Patients' Plasma. Microrna 2021; 10:206-218. [PMID: 34238179 DOI: 10.2174/2211536610666210707114843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/26/2021] [Accepted: 04/14/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Breast cancer, being a heterogenous disease at the intra-tumoral and intertumoral levels, presents challenges in following the progress of the disease. Tumour-secreted aberrantly expressed miRNAs obtained from peripheral blood represent a non-invasive alternative resource for detecting and monitoring the development of the disease. This study evaluates the expression of miR-155, miR-133a, miR-21 and miR-205 as non-invasive, prognostic and follow-up markers for breast cancer. METHODS Plasma expression levels of miR-155, miR-133a, miR-21 and miR-205 were measured using real-time PCR in breast cancer patients (n=63) at presentation, healthy controls (n=25), and in post-treatment samples of 31 patients. A meta-analysis was performed using 43 studies identified from PubMed, Google Scholar and Scopus databases. Hedge's g values were used to calculate the overall effect size. RESULTS Plasma miR-21 levels were higher in breast cancer patients at presentation compared to controls, while no difference was observed for miR-155, miR-133a and miR-205. These results were further supported by the meta-analysis. The altered levels of miR-155 during tamoxifen treatment indicated a potential role for miR-155 in monitoring treatment response. Further, high expressions of at least three miRNAs correlated with poor overall survival in the breast cancer patients. CONCLUSION Plasma levels of miR-155, miR-133a, miR-21 and miR-205 may be useful as prognostic and follow-up markers for breast cancer with further validation in a large cohort of patients.
Collapse
Affiliation(s)
- Aarthy Raghu
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600036,India
| | | | | | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600036,India
| |
Collapse
|
16
|
Vojdani S, Ghaderian SMH, Zali A, Rakhshan A, Oraee Yazdani S, Poursheikhani A, Bidari Zerehpoush F, Sharifi G. Altered expression of EGFR and miR-34a derived from serum and tumoral tissue was associated with glioblastoma multiform. Exp Mol Pathol 2021; 121:104655. [PMID: 34062187 DOI: 10.1016/j.yexmp.2021.104655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Glioblastoma multiform (GBM) is the most prevalent and invasive brain malignancy in adults. There are ongoing researches to introduce novel and non-invasive potential biomarkers for the early detection of GBM. METHODS Here we compared the expression of EGFR, miR-34a, and miR-19a between tumoral and adjacent non-cancerous tissues (ANCTs) of 50 GBM patients and also compared their expression levels in serum samples of GBM patients with serum samples of 50 control subjects. RESULTS The expression level of the EGFR gene was elevated in GBM tissues in comparison to the corresponding ANCTs (P < 0.0001) and also was higher in the serum sample of patients compared with control serum (P < 0.0001). The miR-34a was significantly downregulated in serum samples as well as tissues obtained from GBM patients compared with the corresponding controls (expression ratio = 0.57 and 0.4, P = 0.02 and 0.001 respectively). CONCLUSIONS Dysregulation of the EGFR gene and miR-34a in serum samples of GBM patients compared with the control subjects promises the emergence of non-invasive biomarkers for early detection of GBM which need confirmative studies with a large sample size.
Collapse
Affiliation(s)
- Samaneh Vojdani
- Department of Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Mohammad Hossein Ghaderian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aazadeh Rakhshan
- Department of Pathology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Oraee Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Poursheikhani
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Farahnaz Bidari Zerehpoush
- Department of Pathology, Medical School, Shahid Beheshti University of Medical Sciences, HakimLoghman Hospital, Tehran, Iran
| | - Giuve Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgical Science, Loghman Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Zhang K, Wang YY, Xu Y, Zhang L, Zhu J, Si PC, Wang YW, Ma R. A two-miRNA signature of upregulated miR-185-5p and miR-362-5p as a blood biomarker for breast cancer. Pathol Res Pract 2021; 222:153458. [PMID: 33962174 DOI: 10.1016/j.prp.2021.153458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Differentially expressed microRNAs (miRNAs) in the blood of breast cancer patients may serve as diagnostic biomarkers. METHODS In this study, miRNA microarray of the blood of breast cancer patients and healthy controls was performed. Candidate differentially expressed miRNAs were further verified by real-time polymerase chain reaction in 68 breast cancer patients and 13 healthy controls. RESULTS Six upregulated blood miRNAs (miR-26b-5p, miR-106b-5p, miR-142-3p, miR-142-5p, miR-185-5p, and miR-362-5p) were identified in breast cancer patients. These six miRNAs could discriminate breast cancer patients from healthy controls, with areas under the receiver operating characteristic curve (AUCs) of 0.8891, 0.8158, 0.8529, 0.8507, 0.9050, and 0.9333, respectively. Bioinformatic analysis showed that the six miRNAs were potentially involved in numerous cancer-related pathways, including the mitogen-activated protein kinase signaling pathway, nuclear factor-kappa B signaling pathway, and the transforming growth factor-beta signaling pathway. Importantly, two miRNAs (miR-185-5p and miR-362-5p) were used to construct a two-miRNA panel by logistic regression. The two-miRNA panel displayed a better diagnostic performance than each of the miRNAs alone, with a higher AUC (0.957), sensitivity (92.65 %), and specificity (92.31 %). Additionally, the high expression of the six miRNAs or the two-miRNA panel was associated with poor prognosis of breast cancer. CONCLUSIONS We identified six upregulated miRNAs and a two-miRNA panel in the blood as potential biomarkers for the diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yan-Yan Wang
- Health Management Center, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yao Xu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Li Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Jiang Zhu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Peng-Chao Si
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, Shandong, People's Republic of China
| | - Ya-Wen Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Rong Ma
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
18
|
Kattan SW, Hobani YH, Shaheen S, Mokhtar SH, Hussein MH, Toraih EA, Fawzy MS, Abdalla HA. Association of cyclin-dependent kinase inhibitor 2B antisense RNA 1 gene expression and rs2383207 variant with breast cancer risk and survival. Cell Mol Biol Lett 2021; 26:14. [PMID: 33849428 PMCID: PMC8045214 DOI: 10.1186/s11658-021-00258-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The expression signature of deregulated long non-coding RNAs (lncRNAs) and related genetic variants is implicated in every stage of tumorigenesis, progression, and recurrence. This study aimed to explore the association of lncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) gene expression and the rs2383207A>G intronic variant with breast cancer (BC) risk and prognosis and to verify the molecular role and networks of this lncRNA in BC by bioinformatics gene analysis. METHODS Serum CDKN2B-AS1 relative expression and rs2383207 genotypes were determined in 214 unrelated women (104 primary BC and 110 controls) using real-time PCR. Sixteen BC studies from The Cancer Genome Atlas (TCGA) including 8925 patients were also retrieved for validation of results. RESULTS CDKN2B-AS1 serum levels were upregulated in the BC patients relative to controls. A/A genotype carriers were three times more likely to develop BC under homozygous (OR = 3.27, 95% CI 1.20-8.88, P = 0.044) and recessive (OR = 3.17, 95% CI 1.20-8.34, P = 0.013) models. G/G homozygous patients had a higher expression level [median and quartile values were 3.14 (1.52-4.25)] than A/G [1.42 (0.93-2.35)] and A/A [1.62 (1.33-2.51)] cohorts (P = 0.006). The Kaplan-Meier curve also revealed a higher mean survival duration of G/G cohorts (20.6 months) compared to their counterparts (A/A: 15.8 and A/G: 17.2 months) (P < 0.001). Consistently, BC data sets revealed better survival in cohorts with high expression levels (P = 0.003). Principal component analysis (PCA) showed a deviation of patients who had shorter survival towards A/A and A/G genotypes, multiple lesions, advanced stage, lymphovascular invasion, and HER2+ receptor staining. Ingenuity Pathway Analysis (IPA) showed key genes highly enriched in BC with CDKN2B-AS1. CONCLUSIONS The findings support the putative role of CDKN2B-AS1 as an epigenetic marker in BC and open a new avenue for its potential use as a therapeutic molecular target in this type of cancer.
Collapse
Affiliation(s)
- Shahad W Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Yahya H Hobani
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Sameerah Shaheen
- Anatomy Department and Stem Cell Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sara H Mokhtar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad H Hussein
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
- Department of Biochemistry, College of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Hussein Abdelaziz Abdalla
- Department of Medical Biochemistry, Faculty of Medicine, Taibah University, Medina, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
An Integrated Bioinformatics Study of a Novel Niclosamide Derivative, NSC765689, a Potential GSK3β/ β-Catenin/ STAT3/ CD44 Suppressor with Anti-Glioblastoma Properties. Int J Mol Sci 2021; 22:ijms22052464. [PMID: 33671112 PMCID: PMC7957701 DOI: 10.3390/ijms22052464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Despite management efforts with standard surgery, radiation, and chemotherapy, glioblastoma multiform (GBM) remains resistant to treatment, which leads to tumor recurrence due to glioma stem cells (GSCs) and therapy resistance. In this study, we used random computer-based prediction and target identification to assess activities of our newly synthesized niclosamide-derived compound, NSC765689, to target GBM oncogenic signaling. Using target prediction analyses, we identified glycogen synthase kinase 3β (GSK3β), β-Catenin, signal transducer and activator of transcription 3 (STAT3), and cluster of differentiation 44 (CD44) as potential druggable candidates of NSC765689. The above-mentioned signaling pathways were also predicted to be overexpressed in GBM tumor samples compared to adjacent normal samples. In addition, using bioinformatics tools, we also identified microRNA (miR)-135b as one of the most suppressed microRNAs in GBM samples, which was reported to be upregulated through inhibition of GSK3β, and subsequently suppresses GBM tumorigenic properties and stemness. We further performed in silico molecular docking of NSC765689 with GBM oncogenes; GSK3β, β-Catenin, and STAT3, and the stem cell marker, CD44, to predict protein-ligand interactions. The results indicated that NSC765689 exhibited stronger binding affinities compared to its predecessor, LCC09, which was recently published by our laboratory, and was proven to inhibit GBM stemness and resistance. Moreover, we used available US National Cancer Institute (NCI) 60 human tumor cell lines to screen in vitro anticancer effects, including the anti-proliferative and cytotoxic activities of NSC765689 against GBM cells, and 50% cell growth inhibition (GI50) values ranged 0.23~5.13 μM. In summary, using computer-based predictions and target identification revealed that NSC765689 may be a potential pharmacological lead compound which can regulate GBM oncogene (GSK3β/β-Catenin/STAT3/CD44) signaling and upregulate the miR-135b tumor suppressor. Therefore, further in vitro and in vivo investigations will be performed to validate the efficacy of NSC765689 as a novel potential GBM therapeutic.
Collapse
|
20
|
Gupta I, Rizeq B, Vranic S, Moustafa AEA, Al Farsi H. Circulating miRNAs in HER2-Positive and Triple Negative Breast Cancers: Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2020; 21:E6750. [PMID: 32942528 PMCID: PMC7554858 DOI: 10.3390/ijms21186750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most prevalent diseases among women worldwide and is highly associated with cancer-related mortality. Of the four major molecular subtypes, HER2-positive and triple-negative breast cancer (TNBC) comprise more than 30% of all breast cancers. While the HER2-positive subtype lacks estrogen and progesterone receptors and overexpresses HER2, the TNBC subtype lacks estrogen, progesterone and HER2 receptors. Although advances in molecular biology and genetics have substantially ameliorated breast cancer disease management, targeted therapies for the treatment of estrogen-receptor negative breast cancer patients are still restricted, particularly for TNBC. On the other hand, it has been demonstrated that microRNAs, miRNAs or small non-coding RNAs that regulate gene expression are involved in diverse biological processes, including carcinogenesis. Moreover, circulating miRNAs in serum/plasma are among the most promising diagnostic/therapeutic tools as they are stable and relatively easy to quantify. Various circulating miRNAs have been identified in several human cancers including specific breast cancer subtypes. This review aims to discuss the role of circulating miRNAs as potential diagnostic and prognostic biomarkers as well as therapeutic targets for estrogen-receptor negative breast cancers, HER2+ and triple negative.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Balsam Rizeq
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Halema Al Farsi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
| |
Collapse
|
21
|
Toraih EA, El-Wazir A, Ageeli EA, Hussein MH, Eltoukhy MM, Killackey MT, Kandil E, Fawzy MS. Unleash multifunctional role of long noncoding RNAs biomarker panel in breast cancer: a predictor classification model. Epigenomics 2020; 12:1215-1237. [PMID: 32812439 DOI: 10.2217/epi-2019-0291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: We aimed to explore the circulating expression profile of nine lncRNAs (MALAT1, HOTAIR, PVT1, H19, ROR, GAS5, ANRIL, BANCR, MIAT) in breast cancer (BC) patients relative to normal and risky individuals. Methods: Serum relative expressions of the specified long non-coding RNAs were quantified in 155 consecutive women, using quantitative reverse-transcription PCR. Random Forest (RF) and decision tree were also applied. Results: Significant MALAT1 upregulation and GAS5 downregulation could discriminate risky women from healthy controls. Overexpression of the other genes showed good diagnostic performances. Lower GAS5 levels were associated with metastasis and recurrence. RF model revealed a better performance when combining gene expression patterns with risk factors. Conclusion: The studied panel could be utilized as diagnostic/prognostic biomarkers in BC, providing promising epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Eman A Toraih
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Aya El-Wazir
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 82911, Saudi Arabia
| | - Mohammad H Hussein
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Mohamed M Eltoukhy
- College of Computing and Information Technology, Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia.,Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt
| | - Mary T Killackey
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Emad Kandil
- Department of Surgery, Division of Endocrine & Oncologic Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| |
Collapse
|
22
|
Yousif AA, Eisa HA, Nawar AM, Abd El-latif MS, Behiry EG. Study of serum microRNA-99a relative expression as a diagnostic and prognostic noninvasive biomarker of breast cancer in Egyptian females. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Li F, Bai M, Xu J, Zhu L, Liu C, Duan R. Long-Term Exercise Alters the Profiles of Circulating Micro-RNAs in the Plasma of Young Women. Front Physiol 2020; 11:372. [PMID: 32477155 PMCID: PMC7233279 DOI: 10.3389/fphys.2020.00372] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Objective: The objective of this paper was to study the effects of long-term exercise on circulating microRNAs (miRNAs) in human plasma. Methods: Whole blood was collected from 10 female elite athletes with at least 5 years of training experience in a Synchronized Swimming Group (S group) and 15 female college students without regular exercise training (C group). Plasma miRNAs were then isolated, sequenced, and semi-quantified by the second-generation sequencing technology, and the results were analyzed by bioinformatics methods. Results: We found 380 differentially expressed miRNAs in the S group compared with the C group, among which 238 miRNAs were upregulated and 142 were downregulated. The top five abundant miRNAs in the 380 miRNAs of the S group are hsa-miR-451a, hsa-miR-486, hsa-miR-21-5p, hsa-miR-423-5p, and hsa-let-7b-5p. Muscle-specific/enriched miRNAs were not significantly different, except for miR-206 and miR-486. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, a large proportion of the differentially expressed miRNAs are targeted in cancer-related pathways, including proteoglycans in cancer and miRNAs in cancer and basal cell carcinoma. As the levels of circulating miRNAs (ci-miRNAs) are commonly known to be significantly deregulated in cancer patients, we further compared the levels of some well-studied miRNAs in different types of cancer patients with those in the S group and found that long-term exercise regulates the level of ci-miRNAs in an opposite direction to those in cancer patients. Conclusion: Long-term exercise significantly alters the profiles of plasma miRNAs in healthy young women. It may reduce the risk of certain types of cancers by regulating plasma miRNA levels.
Collapse
Affiliation(s)
- Fan Li
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Muwei Bai
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.,Department of Physical Education, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianfang Xu
- China Institute of Sport Science, Beijing, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Chengyi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
24
|
Fawzy MS, Abu AlSel BT, Al Ageeli E, Al-Qahtani SA, Abdel-Daim MM, Toraih EA. Long non-coding RNA MALAT1 and microRNA-499a expression profiles in diabetic ESRD patients undergoing dialysis: a preliminary cross-sectional analysis. Arch Physiol Biochem 2020; 126:172-182. [PMID: 30270667 DOI: 10.1080/13813455.2018.1499119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/08/2018] [Indexed: 01/22/2023]
Abstract
Background: Circulating non-coding RNAs (ncRNAs) have been implicated in health and disease. This study aimed to evaluate the serum expression profile of microRNA-499a (miR-499a) and its selected bioinformatically predicted partner long-ncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) in diabetes-related end-stage renal disease (ESRD) patients and to correlate the expressions with the patients' clinicolaboratory data.Subjects and methods: Real-time quantitative polymerase chain reaction was applied in diabetics with and without ESRD (n = 90 for each).Results: Serum MALAT1 expression levels were increased in the ESRD group relative to diabetics without ESRD with median (quartile) values of 10.5 (1.41-126.7) (p < .001). However, miR-499a levels were decreased in more than half of ESRD patients with a median of 0.96 (0.13-3.14). Both MALAT1 and miR-499a expression levels were inversely correlated in the ESRD patient-group.Conclusions: MALAT1 up-regulation and miR-499 down-regulation might be involved in diabetic nephropathy-related ESRD pathogenesis. Functional validation studies are warranted to confirm the MALAT1/miR-499a partnership.
Collapse
MESH Headings
- Adult
- Aged
- Base Pairing
- Base Sequence
- Cross-Sectional Studies
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/therapy
- Diabetic Nephropathies/diagnosis
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/therapy
- Disease Progression
- Female
- Gene Expression Regulation
- Humans
- Kidney Failure, Chronic/diagnosis
- Kidney Failure, Chronic/etiology
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/therapy
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- Renal Dialysis
Collapse
Affiliation(s)
- Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Baraah T Abu AlSel
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Saeed Awad Al-Qahtani
- Department of Physiology, Faculty of Medicine, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
25
|
Emergence of Circulating MicroRNAs in Breast Cancer as Diagnostic and Therapeutic Efficacy Biomarkers. Mol Diagn Ther 2020; 24:153-173. [DOI: 10.1007/s40291-020-00447-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Signal peptide missense variant in cancer-brake gene CTLA4 and breast cancer outcomes. Gene 2020; 737:144435. [PMID: 32044407 DOI: 10.1016/j.gene.2020.144435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 01/31/2020] [Indexed: 11/21/2022]
Abstract
The cancer-brake gene CTLA4 has a vital function in suppressing the immune responses of activated T lymphocytes. Numerous reports explored the impact of various CTLA4 variants with the predisposition for malignancies but with unconvincing findings. Hence, this study is designed to assess the association of CTLA4 (c.49A>G, rs231775) variant with the outcome of breast carcinoma. A total of 272 participants (93 BC patients and 179 cancer-free healthy volunteers) were enrolled. Genomic DNA for all participants was genotyped for CTLA4 (c.49A>G) variant via TaqMan genotyping assay. Patients with A/G genotype conferred protection against developing BC under heterozygote comparison (OR = 0.56, 95%CI = 0.31-0.98) as well dominant model (OR = 0.55, 95%CI = 0.32-0.97). AG/GG genotypes were anchored with an increased risk of nodal infiltration (OR = 2.90, 95%CI = 1.03-8.17, P = 0.037), metastasis (OR = 4.46, 95%CI = 1.18-16.8, P = 0.019), advanced clinical stage (OR = 6.54, 95%CI = 2.06-20.75, P < 0.001), recurrence (OR = 5.2, 95%CI = 1.73-15.7, P = 0.001), and shorter survival (OR = 2.54, 95%CI = 1.08-5.99, P = 0.032). In addition, functional enrichment analysis revealed the key role of CTLA4 in cancer immunosurveillance. Our findings indicated that the CTLA4 c.49A>G variant might have prognostic as well diagnostic impact in breast cancer.
Collapse
|
27
|
Fawzy MS, Toraih EA, Ageeli EA, Al-Qahtanie SA, Hussein MH, Kandil E. Noncoding RNAs orchestrate cell growth, death and drug resistance in renal cell carcinoma. Epigenomics 2020; 12:199-219. [PMID: 32011160 DOI: 10.2217/epi-2019-0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: We aimed to explore the roles of noncoding RNAs (ncRNAs) in renal cell carcinoma. Materials & methods: The altered expressions of miR-196a2, miR-499a, H19, MALAT1 and GAS5, as well as some target transcripts were identified by quantitative real-time reverse transcription polymerase chain reaction. Results: Up-regulation of miR-196a2, E2F3, HSPA4 and MALAT1 (median fold change: 5.69, 25.6, 4.15 and 19.6, respectively) and down-regulation of miR-499a, GAS5, PDCD4, ANXA1 and DFFA (median fold change: 0.28, 0.25, 0.12, 0.09 and 0.08, respectively) were reported compared with paired non-cancer tissue. PDCD4, DFFA and GAS5 down-regulation was associated with poor prognosis in terms of high grade, larger tumor, nodal invasion, capsular and pelvic infiltration. Conclusion: The identified ncRNAs could represent potential theranostic biomarkers for renal cell carcinoma.
Collapse
Affiliation(s)
- Manal S Fawzy
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, Louisiana 70112, USA.,Genetics Unit, Department of Histology & Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, University, Jazan 45142, Saudi Arabia
| | - Saeed Awad Al-Qahtanie
- Department of Physiology, Faculty of Medicine, Taibah University, Almadinah Almunawwarah 344, Saudi Arabia
| | - Mohamed H Hussein
- Department of Surgery, Tulane University, School of Medicine, New Orleans, Louisiana 70112, USA
| | - Emad Kandil
- Division of Endocrine & Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
28
|
Savari B, Boozarpour S, Tahmasebi-Birgani M, Sabouri H, Hosseini SM. Overexpression of microRNA-21 in the Serum of Breast Cancer Patients. Microrna 2020; 9:58-63. [PMID: 30887933 DOI: 10.2174/2211536608666190318105757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Breast cancer is the most common cancer diagnosed in women worldwide. So it seems that there's a good chance of recovery if it's detected in its early stages even before the appearances of symptoms. Recent studies have shown that miRNAs play an important role during cancer progression. These transcripts can be tracked in liquid samples to reveal if cancer exists, for earlier treatment. MicroRNA-21 (miR-21) has been shown to be a key regulator of carcinogenesis, and breast tumor is no exception. OBJECTIVE The present study was aimed to track the miR-21 expression level in serum of the breast cancer patients in comparison with that of normal counterparts. METHODS Comparative real-time polymerase chain reaction was applied to determine the levels of expression of miR-21 in the serum samples of 57 participants from which, 42 were the patients with breast cancer including pre-surgery patients (n = 30) and post-surgery patients (n = 12), and the others were the healthy controls (n = 15). RESULTS MiR-21 was significantly over expressed in the serum of breast cancer patients as compared with healthy controls (P = 0.002). A significant decrease was also observed following tumor resection (P < 0.0001). Moreover, it was found that miR-21 overexpression level was significantly associated with tumor grade (P = 0.004). CONCLUSION These findings suggest that miR-21 has the potential to be used as a novel breast cancer biomarker for early detection and prognosis, although further experiments are needed.
Collapse
Affiliation(s)
- Batool Savari
- Department of Biology, Faculty of Basic Sciences, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
| | - Sohrab Boozarpour
- Department of Biology, Faculty of Basic Sciences, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
| | - Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Sabouri
- Department of Plant Production, College of Agriculture, Science and Natural Resource, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
| | - Seyed Mohammad Hosseini
- Department of Radiotherapy and Oncology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
29
|
Zografos E, Zagouri F, Kalapanida D, Zakopoulou R, Kyriazoglou A, Apostolidou K, Gazouli M, Dimopoulos MA. Prognostic role of microRNAs in breast cancer: A systematic review. Oncotarget 2019; 10:7156-7178. [PMID: 31903173 PMCID: PMC6935258 DOI: 10.18632/oncotarget.27327] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to play an important role in breast cancer, functioning either as potential oncogenes or tumor suppressor genes, but their role in the prognosis of patients remains unclear. The aim of the present review study is to highlight recent preclinical and clinical studies performed on both circulating and tissue-specific miRNAs and their potential role as prognostic markers in breast cancer. We systematically searched the PubMed database to explore the prognostic value of miRNAs in breast cancer. After performing the literature search and review, 117 eligible studies were identified. We found that 110 aberrantly expressed miRNAs have been associated with prognosis in breast cancer. In conclusion, the collective data presented in this review indicate that miRNAs could serve as novel prognostic tools in breast cancer, while the clinical application of these findings has yet to be verified.
Collapse
Affiliation(s)
- Eleni Zografos
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Kalapanida
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Roubini Zakopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Kyriazoglou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleoniki Apostolidou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Tang Q, Ouyang H, He D, Yu C, Tang G. MicroRNA-based potential diagnostic, prognostic and therapeutic applications in triple-negative breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2800-2809. [PMID: 31284781 DOI: 10.1080/21691401.2019.1638791] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a distinct subtype of breast cancer characterized by high recurrence rates and poor prognosis compared to other breast cancers. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of various post-transcriptional gene and silence a broad set of target genes. Many recent studies have demonstrated that miRNAs play an important role in the initiation, promotion, malignant conversion, progression, and metastasis of TNBC. Therefore, the aim of this review is to focus on recent advancements of microRNAs-based potential applications in diagnosis, treatment and prognosis of triple-negative breast cancer.
Collapse
Affiliation(s)
- Qian Tang
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China
| | - Hu Ouyang
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China
| | - Dongxiu He
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China.,b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , Hunan , China
| | - Cuiyun Yu
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China.,b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , Hunan , China
| | - Guotao Tang
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China.,b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , Hunan , China
| |
Collapse
|
31
|
Toraih EA, El-Wazir A, Abdallah HY, Tantawy MA, Fawzy MS. Deregulated MicroRNA Signature Following Glioblastoma Irradiation. Cancer Control 2019; 26:1073274819847226. [PMID: 31046428 PMCID: PMC6501491 DOI: 10.1177/1073274819847226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM), the most common and aggressive brain tumor in adults, shows resistance to treatment, particularly radiotherapy. One method for effective treatment is using a group of radiosensitizers that make tumor cells responsive to radiotherapy. A class of molecules whose expression is affected by radiotherapy is the microRNAs (miRNAs) that present promising regulators of the radioresponse. Eighteen miRNAs (miR-26a, -124, -128, -135b, -145, -153, -181a/b, -203, -21, -210, -212, -221/222, -223, -224, -320, and -590), involved in the pathogenesis of GBM and its radioresponsive state, were reviewed to identify their role in GBM and their potential as radiosensitizing agents. MicroRNAs-26a, -124, -128, -145, -153, -181a/b, -203, -221/222, -223, -224, -320, and -590 promoted GBM radiosensitivity, while microRNAs-135b, -21, -210, and -212 encouraged radioresistance. Ectopic overexpression of the radiosensitivity promoting miRNAs and knockdown of the radioresistant miRNAs represent a prospective radiotherapy enhancement opportunity. This offers a glimmer of hope for a group of the most unfortunate patients known to medicine.
Collapse
Affiliation(s)
- Eman A Toraih
- 1 Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,2 Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya El-Wazir
- 1 Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,2 Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda Y Abdallah
- 1 Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,2 Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed A Tantawy
- 3 Department of Hormones, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Manal S Fawzy
- 4 Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,5 Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
32
|
Serum microRNA-21 predicted treatment outcome and survival in HER2-positive breast cancer patients receiving neoadjuvant chemotherapy combined with trastuzumab. Cancer Chemother Pharmacol 2019; 84:1039-1049. [PMID: 31482230 DOI: 10.1007/s00280-019-03937-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the expression of ser-miRNAs at different periods during treatment and analyze their relationship with therapeutic response and prognosis in HER2-positive breast cancer patients receiving neoadjuvant chemotherapy combined with trastuzumab (NCCT). METHODS Venous blood was drawn from patients at different periods during NCCT. The expression of ser-miRNAs was assessed by qRT-PCR and their relation to treatment response and survival was analyzed. RESULTS The results showed the expression of miR-10b, -21, -34a, -125b, -145, -155, and -373 in patients before the start of treatment was significantly higher, ser-miR-210 was lower, and ser-miR-122 was comparable to the levels in healthy controls. Changes in ser-miR-21 levels during NCCT were significantly correlated to clinical response and survival and, however, were not associated with pathology response. The expression levels of ser-miR-21 were decreased from the start of NCCT to the end of the second cycle and from the start to the end of NCCT in clinical responders; however, there was no significant difference in non-responders. The patients with decreased ser-miR-21 expression from the start to the end of the second cycle and from the start to the end of NCCT had better overall survival (OS) and disease-free survival (DFS) than those with elevated ser-miR-21 expression. CONCLUSION These results showed that changes in ser-miR-21 levels were significantly related to NCCT clinical response and prognosis. Ser-miR-21 may serve as a non-invasive biomarker to predict NCCT response in HER2-positive breast cancer.
Collapse
|
33
|
Najminejad H, Kalantar SM, Abdollahpour‐Alitappeh M, Karimi MH, Seifalian AM, Gholipourmalekabadi M, Sheikhha MH. Emerging roles of exosomal miRNAs in breast cancer drug resistance. IUBMB Life 2019; 71:1672-1684. [DOI: 10.1002/iub.2116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Hamid Najminejad
- Department of Medical GeneticsShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for InfertilityShahid Sadoughi University of Medical Sciences Yazd Iran
| | | | | | - Alexander M. Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd)The London BioScience Innovation Centre London UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research CentreIran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical Sciences Tehran Iran
| | - Mohammad Hasan Sheikhha
- Research and Clinical Center for InfertilityShahid Sadoughi University of Medical Sciences Yazd Iran
| |
Collapse
|
34
|
Mohammad HMF, Sami MM, Makary S, Toraih EA, Mohamed AO, El-Ghaiesh SH. Neuroprotective effect of levetiracetam in mouse diabetic retinopathy: Effect on glucose transporter-1 and GAP43 expression. Life Sci 2019; 232:116588. [PMID: 31226418 DOI: 10.1016/j.lfs.2019.116588] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 01/12/2023]
Abstract
AIMS Retinopathy is a neurodegenerative complication associating diabetes mellitus. Diabetic retinopathy (DR) is the primary reason of visual loss during early adulthood. DR has a complicated multifactorial pathophysiology initiated by hyperglycaemia-induced ischaemic neurodegenerative retinal changes, followed by vision-threatening consequences. The main therapeutic modalities for DR involve invasive delivery of intravitreal antiangiogenic agents as well as surgical interventions. The current work aimed to explore the potential anti-inflammatory and retinal neuroprotective effects of levetiracetam. MAIN METHODS This study was performed on alloxan-induced diabetes in mice (n: 21). After 10 weeks, a group of diabetic animals (n: 7) was treated with levetiracetam (25 mg/kg) for six weeks. Retinal tissues were dissected and paraffin-fixed for examination using (1) morphometric analysis with haematoxylin and eosin (HE), (2) immunohistochemistry (GLUT1, GFAP and GAP43), and (3) RT-PCR-detected expression of retinal inflammatory and apoptotic mediators (TNF-α, IL6, iNOS, NF-κB and Tp53). KEY FINDINGS Diabetic mice developed disorganized and debilitated retinal layers with upregulation of the gliosis marker GFAP and downregulation of the neuronal plasticity marker GAP43. Additionally, diabetic retinae showed increased transcription of NF-κB, TNF-α, IL6, iNOS and Tp53. Levetiracetam-treated mice showed downregulation of retinal GLUT1 with relief and regression of retinal inflammation and improved retinal structural organization. SIGNIFICANCE Levetiracetam may represent a potential neuroprotective agent in DR. The data presented herein supported an anti-inflammatory role of levetiracetam. However, further clinical studies may be warranted to confirm the effectiveness and safety of levetiracetam in DR patients.
Collapse
Affiliation(s)
- Hala M F Mohammad
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Central Lab., Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal M Sami
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samy Makary
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Molecular Lab, Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Amany O Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sabah H El-Ghaiesh
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt; Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
35
|
Bahmanpour Z, Sheervalilou R, Choupani J, Shekari Khaniani M, Montazeri V, Mansoori Derakhshan S. A new insight on serum microRNA expression as novel biomarkers in breast cancer patients. J Cell Physiol 2019; 234:19199-19211. [PMID: 31026062 DOI: 10.1002/jcp.28656] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/17/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
Breast cancer (BC) is one of the widespread lethal diseases affecting a large number of women worldwide. As such, employing and identifying significant markers for detecting BC in different stages can assist in better diagnosis and management of the disease. Several diverse markers have been introduced for diagnosis, but their limitations, including low specificity and sensitivity, reduce their application. microRNAs (miRNAs), as short noncoding RNAs, have been shown to significantly influence gene expression in different disease pathologies, especially BC. Clearly, among different samples used for detecting miRNA expressions, circulating miRNAs present as promising and useful biomarkers. Among different body fluid samples, serum serves as one of the most reliable samples, thanks to its high stability under various severe conditions and some unique features. Extensive research has suggested that BC-related miRNAs can remain stable in the serum. The objective of this review is to describe different samples used for detecting miRNAs in BC subjects with emphasis on serum miRNAs. So, this study highlights serum miRNAs with the potential of acting as biomarkers for different stages of BC. We reviewed the possible correlation between potential miRNAs and the risk of early breast cancer, metastatic breast cancer, response to chemotherapy, and relapse.
Collapse
Affiliation(s)
- Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Choupani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Montazeri
- Department of Pathology, Imam Khomeini Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Toraih EA, El-Wazir A, Hussein MH, Khashana MS, Matter A, Fawzy MS, Hosny S. Expression of long intergenic non-coding RNA, regulator of reprogramming, and its prognostic value in patients with glioblastoma. Int J Biol Markers 2019; 34:69-79. [PMID: 30852975 DOI: 10.1177/1724600818814459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long intergenic non-coding RNA, regulator of reprogramming ( LINC-ROR) is a newly identified cytoplasmic long non-coding RNA (lncRNA), which has been found to be dysregulated in different cancers. The present work aimed to quantify LINC-ROR expression profile and assess the tumor proteins p53 and caspase 3 expressions in glioblastoma tissue specimens compared to non-cancer tissues, and to correlate these expression levels with the available clinicopathological and survival data. METHODS LINC-ROR relative expression in 57 glioblastoma cancer tissues and 10 non-cancer tissues was quantified by real-time polymerase chain reaction (qPCR). In addition, methylation-specific PCR of O-6-methylguanine-DNA methyltransferase ( MGMT) promoter and immunohistochemical expression of apoptosis related proteins: p53 and caspase 3 were performed. RESULTS The up-regulation of LINC-ROR was encountered in 89.5% of patients. The higher expression of LINC-ROR was associated with poor disease progression-free and overall survival as well as a younger age of patients ( P=0.036). p53 protein was expressed only in glioblastoma but not in non-cancer tissues while caspase 3 was weakly expressed in most non-cancer tissues and in varying degrees in glioblastoma (24% weak, 30% moderate, and 16% strong expression). The Kaplan-Meier survival plot illustrated poor survival in glioblastoma patients with over-expressed LINC-ROR ( P=0.010) and down-regulated p53 ( P=0.002). Multivariate analysis showed that glioblastoma patients were clustered into two distinct groups based on LINC-ROR expression profile, p53 staining levels and patients' overall survival. CONCLUSIONS LINC-ROR up-regulation may have a role in glioblastoma tumorigenesis and could be a potential prognostic marker for this fatal disease.
Collapse
Affiliation(s)
- Eman A Toraih
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University (FOM/SCU), Ismailia, Egypt.,2 Center of Excellence in Molecular and Cellular Medicine, FOM/SCU, Ismailia, Egypt
| | - Aya El-Wazir
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University (FOM/SCU), Ismailia, Egypt.,2 Center of Excellence in Molecular and Cellular Medicine, FOM/SCU, Ismailia, Egypt
| | | | | | - Amgad Matter
- 5 Department of Neurological surgery, FOM/SCU, Ismailia, Egypt
| | - Manal S Fawzy
- 6 Department of Medical Biochemistry and Molecular Biology, FOM/SCU, Ismailia, Egypt.,7 Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Somaya Hosny
- 2 Center of Excellence in Molecular and Cellular Medicine, FOM/SCU, Ismailia, Egypt.,8 Department of Histology and Cell Biology, FOM/SCU, Ismailia, Egypt
| |
Collapse
|
37
|
Toraih EA, Abdallah HY, Rashed EA, El-Wazir A, Tantawy MA, Fawzy MS. Comprehensive data analysis for development of custom qRT-PCR miRNA assay for glioblastoma: a prevalidation study. Epigenomics 2019; 11:367-380. [DOI: 10.2217/epi-2018-0134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Glioblastoma (GB) is one notable example of miRNA-modulated neoplasms. Given its unique expression signature, proper miRNA profiling can help discriminate between GB and other types of brain tumors. The current work aimed to develop a more GB-specific and applicable custom designed quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) miRNA assay. Materials & methods: A comprehensive data analysis of bioinformatics databases, previous literature and commercially available pre-designed miRNA PCR arrays within the market. Results: A highly enriched panel of 84 deregulated and GB-specific miRNAs has been developed. Conclusion: After validation of this newly developed array, it can not only save the researcher's time and effort, but can also have a potential diagnostic and/or prognostic role in GB, paving the road toward personalized medicine.
Collapse
Affiliation(s)
- Eman A Toraih
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center of Excellence of Molecular & Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda Y Abdallah
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center of Excellence of Molecular & Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Essam A Rashed
- Department of Mathematics, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Department of Computer Science, Faculty of Informatics and Computer Science, The British University in Egypt, Cairo 11837, Egypt
| | - Aya El-Wazir
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center of Excellence of Molecular & Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed A Tantawy
- Hormones Department, Medical Research Division, National Research Center, Cairo, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
38
|
Emerging microRNAs in cancer diagnosis, progression, and immune surveillance. Cancer Lett 2018; 438:126-132. [DOI: 10.1016/j.canlet.2018.09.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/19/2022]
|
39
|
Toraih EA, Alghamdi SA, El-Wazir A, Hosny MM, Hussein MH, Khashana MS, Fawzy MS. Dual biomarkers long non-coding RNA GAS5 and microRNA-34a co-expression signature in common solid tumors. PLoS One 2018; 13:e0198231. [PMID: 30289954 PMCID: PMC6173395 DOI: 10.1371/journal.pone.0198231] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that non-coding RNAs including microRNAs (miRs) and long non-coding RNAs (lncRNAs) are aberrantly expressed in cancer, providing promising biomarkers for diagnosis, prognosis and/or therapeutic targets. We aimed in the current work to quantify the expression profile of miR-34a and one of its bioinformatically selected partner lncRNA growth arrest-specific 5 (GAS5) in a sample of Egyptian cancer patients, including three prevalent types of cancer in our region; renal cell carcinoma (RCC), glioblastoma (GB), and hepatocellular carcinoma (HCC) as well as to correlate these expression profiles with the available clinicopathological data in an attempt to clarify their roles in cancer. Quantitative real-time polymerase chain reaction analysis was applied. Different bioinformatics databases were searched to confirm the potential miRNAs-lncRNA interactions of the selected ncRNAs in cancer pathogenesis. The tumor suppressor lncRNA GAS5 was significantly under-expressed in the three types of cancer [0.08 (0.006-0.38) in RCC, p <0.001; 0.10 (0.003-0.89) in GB, p < 0.001; and 0.12 (0.015-0.74) in HCC, p < 0.001]. However, levels of miR-34a greatly varied according to the tumor type; it displayed an increased expression in RCC [4.05 (1.003-22.69), p <0.001] and a decreased expression in GB [0.35 (0.04-0.95), p <0.001]. Consistent to the computationally predicted miRNA-lncRNA interaction, negative correlations were observed between levels of GAS5 and miR-34a in RCC samples (r = -0.949, p < 0.001), GB (r = -0.518, p < 0.001) and HCC (r = -0.455, p = 0.013). Kaplan-Meier curve analysis revealed that RCC patients with down-regulated miR-34a levels had significantly poor overall survival than their corresponding (p < 0.05). Hierarchical clustering analysis showed RCC patients could be clustered by GAS5 and miR-34a co-expression profile. Our results suggest potential applicability of GAS5 and miR-34a with other conventional markers for various types of cancer. Further functional validation studies are warranted to confirm miR-34a/GAS5 interplay in cancer.
Collapse
Affiliation(s)
- Eman A. Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Saleh Ali Alghamdi
- Medical Genetics, Clinical Laboratory Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Aya El-Wazir
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Marwa M. Hosny
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | | | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
40
|
Toraih EA, Ellawindy A, Fala SY, Al Ageeli E, Gouda NS, Fawzy MS, Hosny S. Oncogenic long noncoding RNA MALAT1 and HCV-related hepatocellular carcinoma. Biomed Pharmacother 2018; 102:653-669. [PMID: 29604585 DOI: 10.1016/j.biopha.2018.03.105] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/11/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. The oncogenic function of the long non-coding RNA; metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in HCC remains unclear. We aimed to evaluate MALAT1 serum expression profile in HCC and explore its relation to the clinicopathological features. Quantitative Real Time-Polymerase Chain Reaction was applied in 70 cohorts (30 HCC, 20 HCV, 20 controls). Further meta-analysis of clinical studies and in vitro validated experiments was employed. Serum MALAT1 showed area under the curve of 0.79 and 0.70 to distinguish patients with cancer from normal and cirrhotic individuals at fold change of 1.0 and 1.26, respectively. Expression level was significantly higher in males (P <0.001) and patients with massive ascites (P = 0.005). Correlation analysis showed positive correlation of MALAT1 with total bilirubin (r = 0.456, P <0.001) and AST (r = 0.280, P = 0.019), and negative correlation with the hemoglobin level (r = 0.312, P = 0.009). Meta-analysis showed that the over-expressed MALAT1 was linked to tumor number [Cohen's d = 0.450, 95% CI (0.21 to 0.68)], clinical stage [Cohen's d = 0.048, 95% CI (-0.83 to 0.74)], and AFP level [Cohen's d = 0.354, 95% CI (0.1 to 0.57)]. In silico data analysis and systematic review confirmed MALAT1 oncogenic function in cancer development and progression. In conclusion, circulatory MALAT1 might represent a putative non-invasive prognostic biomarker indicating worse liver failure score in HCV-related HCC patients with traditional markers. Large-scale verification is warranted in future studies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/virology
- Case-Control Studies
- Computer Simulation
- Demography
- Female
- Gene Expression Regulation, Neoplastic
- Hepacivirus/physiology
- Humans
- Liver Cirrhosis/diagnosis
- Liver Cirrhosis/genetics
- Liver Neoplasms/blood
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Male
- Middle Aged
- Prognosis
- Publication Bias
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcriptome/genetics
- alpha-Fetoproteins/metabolism
Collapse
Affiliation(s)
- Eman A Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt.
| | - Alia Ellawindy
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Salma Y Fala
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, P.O. 45142, Saudi Arabia
| | - Nawal S Gouda
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura, Mansoura University, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, P.O. 41522, Egypt; Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Somaya Hosny
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt; Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
41
|
OncomiR-27a rs895819 variant and breast cancer risk: An updated meta-analysis. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Fawzy MS, Toraih EA, Hamed EO, Hussein MH, Ismail HM. Association of MIR-499a expression and seed region variant (rs3746444) with cardiovascular disease in Egyptian patients. Acta Cardiol 2018; 73:131-140. [PMID: 28786773 DOI: 10.1080/00015385.2017.1351243] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Circulating microRNAs could be powerful markers of acute myocardial infarction (MI) and its functional genetic variants could increase susceptibility to cardiovascular disease (CVD). The current study aimed to quantify the microRNA (miR)-499a levels in serum of MI patients compared to hypertensive and healthy subjects and to investigate the association of its A/G variant rs3746444 with CVD in a sample of an Egyptian population. METHODS Serum miR-499a relative expressions were measured in 110 acute MI patients, 76 hypertensive patients, and 121 healthy controls by Real-time quantitative polymerase chain reaction. MIR-499a genotyping was performed for an additional 107 coronary artery disease patients by Real-time allele discrimination assay. RESULTS Acute MI patients showed high relative expression of miR-499a (> 105-fold, p < .001), and it was nearly undetectable in healthy controls and hypertensive patients. It showed an area under the curve of 0.953, with a sensitivity of 97.2% and a specificity of 75.0%. ST-elevation MI (STEMI) patients had higher miR-499a serum levels than patients with Non-STEMI. There was a significant association of MIR-499a variant with acute MI but not with hypertension under all genetic models tested. As a new finding, in overall and stratified analysis, the miR-499a variant was not correlated with its expression profile. CONCLUSIONS Circulating miR-499a levels could be a useful biomarker, discriminating acute MI within 12 hours from healthy subjects. Its variant rs3746444 A/G is associated with increased susceptibility to acute MI and CAD in Egyptian population.
Collapse
Affiliation(s)
- Manal S. Fawzy
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Saudi Arabia
| | - Eman A. Toraih
- Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Elham O. Hamed
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Hussein M. Ismail
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Medicine, College of Medicine, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Gao Y, Dai M, Liu H, He W, Lin S, Yuan T, Chen H, Dai S. Diagnostic value of circulating miR-21: An update meta-analysis in various cancers and validation in endometrial cancer. Oncotarget 2018; 7:68894-68908. [PMID: 27655698 PMCID: PMC5356598 DOI: 10.18632/oncotarget.12028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/02/2016] [Indexed: 01/06/2023] Open
Abstract
MiR-21 has been identified as one of the most common proto-oncogenes. It is hypothesized that up-regulated miR-21 could be served as a potential biomarker for human cancer diagnosis. However, inconsistencies or discrepancies about diagnostic accuracy of circulating miR-21 still remain. In this sense, miR-21′s diagnostic value needs to be fully validated. In this study, we performed an update meta-analysis to estimate the diagnostic value of circulating miR-21 in various human cancers. Additionally, we conducted a validation test on 50 endometrial cancer patients, 50 benign lesion patients and 50 healthy controls. A systematical literature search for relevant articles was performed in Pubmed, Embase and Cochrane Library. A total of 48 studies from 39 articles, involving 3,568 cancer patients and 2,248 controls, were included in this meta-analysis. The overall sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) were 0.76 (0.71-0.80), 0.82 (0.79-0.85), 4.3 (3.6-5.1), 0.29 (0.24-0.35), 15 (11-20) and 0.86 (0.83-0.89), respectively. In the validation test, the expression levels of serum miR-21 were significantly higher in benign lesion patients (p = 0.003) and endometrial cancer patients (p = 0.000) compared with that of healthy controls. Endometrial cancer patients showed higher miR-21 expression levels (p = 0.000) compared with benign lesion patients. In conclusion, the meta-analysis shows that circulating miR-21 has excellent performance on the diagnosis for various cancers and the validation test demonstrates that serum miR-21 could be served as a novel biomarker for endometrial carcinoma.
Collapse
Affiliation(s)
- Yun Gao
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Meiyu Dai
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Haihua Liu
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Wangjiao He
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Shengzhang Lin
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Tianzhu Yuan
- Department of Thoracic Surgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Hong Chen
- Department of Haematology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Shengming Dai
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| |
Collapse
|
44
|
Gao Y, Cai Q, Huang Y, Li S, Yang H, Sun L, Chen K, Wang Y. MicroRNA-21 as a potential diagnostic biomarker for breast cancer patients: a pooled analysis of individual studies. Oncotarget 2018; 7:34498-506. [PMID: 27153564 PMCID: PMC5085171 DOI: 10.18632/oncotarget.9142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/16/2016] [Indexed: 12/28/2022] Open
Abstract
MicroRNA-21 (miR-21) has been reported as the potential novel diagnostic biomarker for breast cancer in several studies, but their results were inconsistent. Therefore, we conducted a systematic analysis to evaluate the diagnostic value of miR-21 in detecting breast cancer. A comprehensive electronic and manual search was conducted for relevant literatures through several databases up to November 9, 2015. QUADAS-2 was used to assess the quality of the studies included in the study. All statistical analyses were performed using Meta-Disc 1.4 and Stata 12.0. Eleven studies with a total of 918 breast cancer patients and 613 controls were included. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) with their 95% confidence intervals (CIs) were 0.72 (95% CI: 0.69–0.75), 0.80 (95% CI: 0.77–0.83), 3.37 (95% CI: 2.24–5.07), 0.30 (95% CI: 0.19–0.50), and 11.79 (95% CI: 5.23–26.57), respectively. The area under the curve of SROC was 0.8517. In conclusion, our analyses suggested that miR-21 is a promising biomarker in diagnosing breast cancer. For clinical purpose, further large-scale studies are warranted to validate its clinical application.
Collapse
Affiliation(s)
- Ying Gao
- Department of Health Service Management, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.,Department of Cancer Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Qiliang Cai
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yubei Huang
- Department of Cancer Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Shu Li
- Department of Health Service Management, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Hongxi Yang
- Department of Health Service Management, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Li Sun
- Department of Health Service Management, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Kexin Chen
- Department of Cancer Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yaogang Wang
- Department of Health Service Management, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
45
|
Li P, Dong J, Zhou X, Sun W, Huang H, Chen T, Ye B, Zheng Z, Lu M. Expression patterns of microRNA-329 and its clinical performance in diagnosis and prognosis of breast cancer. Onco Targets Ther 2017; 10:5711-5718. [PMID: 29238203 PMCID: PMC5713693 DOI: 10.2147/ott.s147974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study was aimed to assess the expression and clinical performance of microRNA-329 (miR-329) in breast cancer. We recruited 134 breast cancer patients and 70 healthy volunteers for this study. MiR-329 expression was estimated by quantitative real-time polymerase chain reaction. A receiver operating characteristic assay was performed to evaluate the diagnostic value of serum miR-329. In addition, the prognostic significance of miR-329 was evaluated through Kaplan–Meier survival and Cox regression analyses. According to quantitative real-time polymerase chain reaction, miR-329 expression was downregulated in cancerous samples compared with healthy and normal controls (P<0.01), and its expression in serum specimens positively correlated with its expression in tissue samples (R=0.493, P<0.001). The decreased expression of miR-329 correlated with lymph node metastasis (P=0.015) and TNM stage (P=0.003). A receiver operating characteristic curve with an area under the curve of 0.932 was constructed, indicating the high diagnostic accuracy of miR-329. From the survival and multivariate Cox assays, we found that downregulated miR-329 expression was associated with poor overall survival (log-rank P<0.001) and served as an independent prognostic factor (hazard ratio =2.987, 95% CI =1.681–5.308, and P<0.001). In silico analysis using The Cancer Genome Atlas confirmed that miR-329 expression was lower in breast cancer cases compared with normal controls (P<0.001) and could be an efficient biomarker for cancer patients. Down-regulated miR-329 expression was an effective diagnostic and prognostic biomarker, which could be used for targeted therapy in patients with breast cancer.
Collapse
Affiliation(s)
- Pihong Li
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianda Dong
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Zhou
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - He Huang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tong Chen
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bing Ye
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiqiang Zheng
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingdong Lu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Abdulhussain MM, Hasan NA, Hussain AG. Interrelation of the Circulating and Tissue MicroRNA-21 with Tissue PDCD4 Expression and the Invasiveness of Iraqi Female Breast Tumors. Indian J Clin Biochem 2017; 34:26-38. [PMID: 30728670 DOI: 10.1007/s12291-017-0710-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
The changes in the translational repression and variation in mRNA degradation induced by micro RNA are important aspects of tumorigenesis. The association of microRNA-21 with clinicopathologic features and expression of programed cell death 4 (PDCD4) in Iraqi female's with breast tumors has not been studied. MicroRNAs were extracted from a set of 60 breast tumor tissues and blood samples of females with breast cancer and benign breast lesions obtained after breast-reductive surgery, and only blood samples from 30 normal volunteers. These extracts were evaluated for miR-21 expression by quantitative RT-PCR. Analysis of PDCD4 protein expression was carried out as miR-21 target gene by immunohistochemical tests and correlating the results with patients' clinicopathological features. Significant overexpression of miRNA-21 was found in breast cancer group. The fold increase in the miR-21 gene expression was significantly higher in circulating exosomes and breast tissues of breast cancer patients as compared to other groups (P < 0.001). Overexpression of miR-21 was also significantly associated with the advanced tumor stage and histological grade. In breast cancer patients, PDCD4 protein expression was decreased to about 70% of the level in the control group. The delta Ct of exosomal and breast tissue miRNA-21 was negatively associated with PDCD4 expression. In conclusion, the translational repression of the PDCD4 induced by the high expression of miR-21 promotes breast cell transformation and development of breast tumor, and circulating miR-21 level could be applied to the screening panels for early detection of women breast cancer.
Collapse
Affiliation(s)
- Meena M Abdulhussain
- 1Department of Chemistry and Biochemistry, College of Medicine, Alnahrain University, Baghdad, Iraq
| | - Najat A Hasan
- 1Department of Chemistry and Biochemistry, College of Medicine, Alnahrain University, Baghdad, Iraq
| | - Alaa G Hussain
- 2Department of Clinical Pathology, College of Medicine, Alnahrain University, Baghdad, Iraq
| |
Collapse
|
47
|
Toraih EA, Aly NM, Abdallah HY, Al-Qahtani SA, Shaalan AA, Hussein MH, Fawzy MS. MicroRNA-target cross-talks: Key players in glioblastoma multiforme. Tumour Biol 2017; 39:1010428317726842. [PMID: 29110584 DOI: 10.1177/1010428317726842] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The role of microRNAs in brain cancer is still naive. Some act as oncogene and others as tumor suppressors. Discovery of efficient biomarkers is mandatory to debate that aggressive disease. Bioinformatically selected microRNAs and their targets were investigated to evaluate their putative signature as diagnostic and prognostic biomarkers in primary glioblastoma multiforme. Expression of a panel of seven microRNAs (hsa-miR-34a, hsa-miR-16, hsa-miR-17, hsa-miR-21, hsa-miR-221, hsa-miR-326, and hsa-miR-375) and seven target genes ( E2F3, PI3KCA, TOM34, WNT5A, PDCD4, DFFA, and EGFR) in 43 glioblastoma multiforme specimens were profiled compared to non-cancer tissues via quantitative reverse transcription-polymerase chain reaction. Immunohistochemistry staining for three proteins (VEGFA, BAX, and BCL2) was performed. Gene enrichment analysis identified the biological regulatory functions of the gene panel in glioma pathway. MGMT ( O-6-methylguanine-DNA methyltransferase) promoter methylation was analyzed for molecular subtyping of tumor specimens. Our data demonstrated a significant upregulation of five microRNAs (hsa-miR-16, hsa-miR-17, hsa-miR-21, hsa-miR-221, and hsa-miR-375), three genes ( E2F3, PI3KCA, and Wnt5a), two proteins (VEGFA and BCL2), and downregulation of hsa-miR-34a and three other genes ( DFFA, PDCD4, and EGFR) in brain cancer tissues. Receiver operating characteristic analysis revealed that miR-34a (area under the curve = 0.927) and miR-17 (area under the curve = 0.900) had the highest diagnostic performance, followed by miR-221 (area under the curve = 0.845), miR-21 (area under the curve = 0.836), WNT5A (area under the curve = 0.809), PDCD4 (area under the curve = 0.809), and PI3KCA (area under the curve = 0.800). MGMT promoter methylation status was associated with high miR-221 levels. Moreover, patients with VEGFA overexpression and downregulation of TOM34 and BAX had poor overall survival. Nevertheless, miR-17, miR-221, and miR-326 downregulation were significantly associated with high recurrence rate. Multivariate analysis by hierarchical clustering classified patients into four distinct groups based on gene panel signature. In conclusion, the explored microRNA-target dysregulation could pave the road toward developing potential therapeutic strategies for glioblastoma multiforme. Future translational and functional studies are highly recommended to better understand the complex bio-molecular signature of this difficult-to-treat tumor.
Collapse
Affiliation(s)
- Eman Ali Toraih
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nagwa Mahmoud Aly
- 2 Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda Y Abdallah
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Saeed Awad Al-Qahtani
- 3 Department of Physiology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Aly Am Shaalan
- 4 Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,5 Department of Anatomy and Histology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | | | - Manal Said Fawzy
- 2 Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,7 Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
48
|
Fawzy MS, Toraih EA, Ibrahiem A, Abdeldayem H, Mohamed AO, Abdel-Daim MM. Evaluation of miRNA-196a2 and apoptosis-related target genes: ANXA1, DFFA and PDCD4 expression in gastrointestinal cancer patients: A pilot study. PLoS One 2017; 12:e0187310. [PMID: 29091952 PMCID: PMC5665540 DOI: 10.1371/journal.pone.0187310] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022] Open
Abstract
Previous reports have suggested the significant association of miRNAs aberrant expression with tumor initiation, progression and metastasis in cancer, including gastrointestinal (GI) cancers. The current preliminary study aimed to evaluate the relative expression levels of miR-196a2 and three of its selected apoptosis-related targets; ANXA1, DFFA and PDCD4 in a sample of GI cancer patients. Quantitative real-time PCR for miR-196a2 and its selected mRNA targets, as well as immunohistochemical assay for annexin A1 protein expression were detected in 58 tissues with different GI cancer samples. In addition, correlation with the clinicopathological features and in silico network analysis of the selected molecular markers were analyzed. Stratified analyses by cancer site revealed elevated levels of miR-196a2 and low expression of the selected target genes. Annexin protein expression was positively correlated with its gene expression profile. In colorectal cancer, miR-196a over-expression was negatively correlated with annexin A1 protein expression (r = -0.738, p < 0.001), and both were indicators of unfavorable prognosis in terms of poor differentiation, larger tumor size, and advanced clinical stage. Taken together, aberrant expression of miR-196a2 and the selected apoptosis-related biomarkers might be involved in GI cancer development and progression and could have potential diagnostic and prognostic roles in these types of cancer; particularly colorectal cancer, provided the results experimentally validated and confirmed in larger multi-center studies.
Collapse
Affiliation(s)
- Manal S. Fawzy
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Eman A. Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf Ibrahiem
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansours, Egypt
| | - Hala Abdeldayem
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amany O. Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan
| |
Collapse
|
49
|
Abstract
Extracellular RNAs consist of coding and non-coding transcripts released from all cell types, which are involved in multiple cellular processes, predominantly through regulation of gene expression. Recent advances have helped us better understand the functions of these molecules, particularly microRNAs (miRNAs). Numerous pre-clinical and human studies have demonstrated that miRNAs are dysregulated in cancer and contribute to tumorigenesis and metastasis. miRNA profiling has extensively been evaluated as a non-invasive method for cancer diagnosis, prognostication, and assessment of response to cancer therapies. Broader applications for miRNAs in these settings are currently under active development. Investigators have also moved miRNAs into the realm of cancer therapy. miRNA antagonists targeting miRNAs that silence tumor suppressor genes have shown promising pre-clinical activity. Alternatively, miRNA mimics that silence oncogenes are also under active investigation. These miRNA-based cancer therapies are in early development, but represent novel strategies for clinical management of human cancer.
Collapse
Affiliation(s)
- Jonathan R Thompson
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jing Zhu
- Department of Pathology and MCW Cancer Center, TBRC-C4970, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Deepak Kilari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Liang Wang
- Department of Pathology and MCW Cancer Center, TBRC-C4970, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
50
|
Shehata RH, Abdelmoneim SS, Osman OA, Hasanain AF, Osama A, Abdelmoneim SS, Toraih EA. Deregulation of miR-34a and Its Chaperon Hsp70 in Hepatitis C virus-Induced Liver Cirrhosis and Hepatocellular Carcinoma Patients. Asian Pac J Cancer Prev 2017; 18:2395-2401. [PMID: 28950684 PMCID: PMC5720642 DOI: 10.22034/apjcp.2017.18.9.2395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNA deregulation may occur during hepatocellular carcinoma (HCC) genesis and progression
stages. MicroRNA-34a (miR-34a) functions as a tumor suppressor and is down-regulated or silenced in a variety of
human cancers, while heat shock proteins (Hsps) play important roles in assisting protein folding and preventing
both protein aggregation and transport across membranes. The present study aimed to evaluating serum expression of
miR-34a and its target Hsp70 for early detection of HCC in patients with liver cirrhosis (LC), focusing on correlations
with clinicopathological features. Methods: A total of 180 patients were included: 120 with HCC on top of LC (60 with
either early or late HCC) and 60 patients with HCV-related LC. In addition, 60 healthy individuals were considered as
controls. Real-time polymerase chain reactions were performed for expression profiling of serum miR-34a and Hsp70
and for allelic discrimination of the promotor variant (rs2763979, C/T). In addition, in silico analysis was carried out.
Results: All participants were heterozygote for the promotor polymorphism. miR-34a serum levels were significantly
under-expressed in LC and especially HCC patients as compared to controls. Associations with a high Child-Turcotte-
Pugh (CTP) score, advanced cancer stage, and number of masses were noted. In contrast the target Hsp70 was significantly
overexpressed in cancer patients but not in LC group and inversely correlated with miR-34a levels. Conclusion: Utility
of circulating miRNAs as biomarkers for early detection of HCC was raised. Future large-scale studies are warranted
to confirm the current findings.
Collapse
Affiliation(s)
- Rasha H Shehata
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt. ,
| | | | | | | | | | | | | |
Collapse
|