1
|
Kaorey N, Dickinson K, Agnihotram VR, Zeitouni A, Sadeghi N, Burnier JV. The role of ctDNA from liquid biopsy in predicting survival outcomes in HPV-negative head and neck cancer: A meta-analysis. Oral Oncol 2025; 161:107148. [PMID: 39742703 DOI: 10.1016/j.oraloncology.2024.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
The incidence of head and neck cancer (HNC) is on the rise, making it a significant clinical challenge. Human papillomavirus (HPV)-related and HPV-negative HNC exhibit distinct etiopathogenesis and prognoses, requiring targeted approaches for effective management. Conventional tissue biopsies are essential for confirming the diagnosis and locating solid tumors. However, they have limitations in detecting microscopic disease, tracking treatment response, and capturing the dynamic heterogeneity of the mutational profile within the tumor. Liquid biopsy using circulating tumor DNA (ctDNA) analysis has emerged as a promising non-invasive tool to overcome the drawbacks of conventional biopsy for comprehensive molecular profiling. This meta-analysis aims to colligate available evidence on the clinical utility of ctDNA analysis in predicting survival outcomes, specifically in HPV-negative HNC. Our systematic search of six electronic databases identified eight publications (N = 886 patients) meeting the inclusion criteria. The included studies reported data from HPV-negative HNC patients, employing ctDNA analysis to report survival outcomes. Our findings reveal a significant association between mutation or methylation in ctDNA and worsened survival outcomes in HPV-negative HNC cases. The presence of ctDNA mutations in TP53 and methylation of SEPT9 and SHOX2 was linked to reduced overall survival, disease-free survival, and progression-free survival. Subgroup analyses demonstrated consistent associations across different survival outcomes, ctDNA detection methods, and blood collection tubes used. Our study underscores the need for future research endeavors prioritizing larger, well-designed prospective studies with standardized methodologies to further elucidate the role of ctDNA analysis in guiding personalized treatment approaches and optimizing patient care in this specific HNC cohort.
Collapse
Affiliation(s)
- Nivedita Kaorey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada.
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada.
| | | | - Anthony Zeitouni
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada.
| | - Nader Sadeghi
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada; Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada.
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada.
| |
Collapse
|
2
|
Chen XP, He SX, Chen MY, Chen FB, Wu P, Shi P, Zhao SC, Zhao LY, Xiong XM, Zeng J. Meta-analysis of the accuracy for RASSF1A methylation in bronchial aspirates for the diagnosis of lung cancer. PLoS One 2024; 19:e0299447. [PMID: 39052646 PMCID: PMC11271935 DOI: 10.1371/journal.pone.0299447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/10/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE To establish the diagnostic accuracy of RASSF1A (Ras association domain family 1 isoform) methylation using bronchial aspirates as an auxiliary method for diagnosing lung cancer through a systematic review and meta-analysis. METHODS Studies published prior to October 30, 2022, were retrieved from the Embase, PubMed, Web of Science, and Wan Fang databases using the keywords "lung cancer", "RASSF1A", "methylation", and "bronchial aspirates". A fixed or random effect model was used to calculate the combined sensitivity, specificity, positive likelihood ratios (LR), negative LR, diagnostic odds ratio (DOR), along with the respective 95% confidence intervals (CIs) and the area under the curve (AUC) with Q index. The threshold effect was defined by using the Spearman correlation coefficient, and the Deeks funnel plot was generated to evaluate publication bias. RESULTS Among the 12 trials that met the inclusion criteria, a total of 2388 participants were involved. The pooled results for the diagnosis of lung cancer were as follows, when compared to the pathological diagnosis: sensitivity of 0.47 (95% CI: 0.45-0.50), specificity of 0.96 (95% CI: 0.95-0.97), positive LR of 12.18 (95% CI: 8.96-16.55), negative LR of 0.56 (95% CI: 0.52-0.61), DOR of 24.05 (95% CI: 17.29-33.47), and AUC of 0.78 (Q index = 0.72), respectively. The sensitivity of the RASSF1A methylation assay was relatively low in a detailed subgroup analysis, fluctuating between 0.39 and 0.90, indicating a limitation in its diagnostic value for lung cancer. The RASSF1A methylation assay, on the other hand, demonstrated excellent specificity, suggesting a high exclusion value. Of note, the diagnostic sensitivity, specificity, DOR, and AUC for small cell lung cancer were 0.90 (0.84-0.94), 0.95 (0.94-0.97), 249.5 (103.94-598.8), and 0.98, respectively, showing that RASSF1A methylation was a promising biomarker for diagnosing small cell lung cancer with both high diagnostic and exclusion value. Furthermore, RASSF1A methylation using bronchial washings and bronchial aspirates showed a high AUC of 0.998 and 0.93, respectively, indicating excellent diagnostic performance. CONCLUSIONS The methylation of RASSF1A in bronchial aspirates demonstrated a high level of diagnostic accuracy and has the potential to be a valuable supplementary diagnostic method, especially for identifying small cell lung cancer.
Collapse
Affiliation(s)
- Xu-ping Chen
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Shi-xu He
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Meng-you Chen
- Intern, Qiqihar Medical University, Qiqihar, Heilongjiang Province, China
| | - Fu-bin Chen
- Department of General Internal Medicine, Qianwei Xuefu Community Health Service Center, Leshan, SiChuan Province, China
| | - Peng Wu
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Ping Shi
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Shi-cai Zhao
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Ling-yan Zhao
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Xiao-min Xiong
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Jia Zeng
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| |
Collapse
|
3
|
Gao J, Shi W, Wang J, Guan C, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Yang C, Li J, Bao H, Zhong X, Cui Y. Research progress and applications of epigenetic biomarkers in cancer. Front Pharmacol 2024; 15:1308309. [PMID: 38681199 PMCID: PMC11048075 DOI: 10.3389/fphar.2024.1308309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoqiang Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Grossi I, Assoni C, Lorini L, Smussi D, Gurizzan C, Grisanti S, Paderno A, Mattavelli D, Piazza C, Pelisenco IA, De Petro G, Salvi A, Bossi P. Evaluation of DNA methylation levels of SEPT9 and SHOX2 in plasma of patients with head and neck squamous cell carcinoma using droplet digital PCR. Oncol Rep 2024; 51:52. [PMID: 38299234 PMCID: PMC10865173 DOI: 10.3892/or.2024.8711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the seventh most commonly diagnosed cancer globally. HNSCC develops from the mucosa of the oral cavity, pharynx and larynx. Methylation levels of septin 9 (SEPT9) and short stature homeobox 2 (SHOX2) genes in circulating cell‑free DNA (ccfDNA) are considered epigenetic biomarkers and have shown predictive value in preliminary reports in HNSCC. Liquid biopsy is a non‑invasive procedure that collects tumor‑derived molecules, including ccfDNA. In the present study, a droplet digital PCR (ddPCR)‑based assay was developed to detect DNA methylation levels of circulating SEPT9 and SHOX2 in the plasma of patients with HNSCC. The assay was first set up using commercial methylated and unmethylated DNA. The dynamic changes in the methylation levels of SEPT9 and SHOX2 were then quantified in 20 patients with HNSCC during follow‑up. The results highlighted: i) The ability of the ddPCR‑based assay to detect very low copies of methylated molecules; ii) the significant decrease in SEPT9 and SHOX2 methylation levels in the plasma of patients with HNSCC at the first time points of follow‑up with respect to T0; iii) a different trend of longitudinally DNA methylation variations in small groups of stratified patients. The absolute and precise quantification of SEPT9 and SHOX2 methylation levels in HNSCC may be useful for studies with translational potential.
Collapse
Affiliation(s)
- Ilaria Grossi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, I-25123 Brescia, Italy
| | - Claudia Assoni
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Luigi Lorini
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Davide Smussi
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Cristina Gurizzan
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Salvatore Grisanti
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Alberto Paderno
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Cesare Piazza
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Iulia Andreea Pelisenco
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, I-25123 Brescia, Italy
| | - Giuseppina De Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, I-25123 Brescia, Italy
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, I-25123 Brescia, Italy
| | - Paolo Bossi
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| |
Collapse
|
5
|
Du C, Tan L, Xiao X, Xin B, Xiong H, Zhang Y, Ke Z, Yin J. Detection of the DNA methylation of seven genes contribute to the early diagnosis of lung cancer. J Cancer Res Clin Oncol 2024; 150:77. [PMID: 38315228 PMCID: PMC10844440 DOI: 10.1007/s00432-023-05588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Low-dose Computed Tomography (CT) is used for the detection of pulmonary nodules, but the ambiguous risk evaluation causes overdiagnosis. Here, we explored the significance of the DNA methylation of 7 genes including TAC1, CDO1, HOXA9, ZFP42, SOX17, RASSF1A and SHOX2 in the blood cfDNA samples in distinguishing lung cancer from benign nodules and healthy individuals. METHOD A total of 149 lung cancer patients [72 mass and 77 ground-glass nodules (GGNs)], 5 benign and 48 healthy individuals were tested and analyzed in this study. The lasso-logistic regression model was built for distinguishing cancer and control/healthy individuals or IA lung cancer and non-IA lung cancer cases. RESULTS The positive rates of methylation of 7 genes were higher in the cancer group as compared with the healthy group. We constructed a model using age, sex and the ΔCt value of 7 gene methylation to distinguish lung cancer from benign and healthy individuals. The sensitivity, specificity and AUC (area under the curve) were 86.7%, 81.4% and 0.891, respectively. Also, we assessed the significance of 7 gene methylation together with patients' age and sex in distinguishing of GGNs type from the mass type. The sensitivity, specificity and AUC were 77.1%, 65.8% and 0.753, respectively. Furthermore, the methylation positive rates of CDO1 and SHOX2 were different between I-IV stages of lung cancer. Specifically, the positive rate of CDO1 methylation was higher in the non-IA group as compared with the IA group. CONCLUSION Collectively, this study reveals that the methylation of 7 genes has a big significance in the diagnosis of lung cancer with high sensitivity and specificity. Also, the 7 genes present with certain significance in distinguishing the GGN type lung cancer, as well as different stages.
Collapse
Affiliation(s)
- Chaoxiang Du
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, China
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Lijie Tan
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, China
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Xiao Xiao
- School of Physics, Changchun University of Science and Technology, Changchun, 130022, China
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China
| | - Beibei Xin
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China
| | - Hui Xiong
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China
| | - Yuying Zhang
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China
| | - Zhonghe Ke
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China.
| | - Jun Yin
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Zhou J, Li P, Feng J, Wu Q, You S. MiR-24-1-5p Hinders Malignant Phenotypes of Clear Cell Renal Cell Carcinoma by Targeting SHOX2. Biochem Genet 2023; 61:2004-2019. [PMID: 36917325 DOI: 10.1007/s10528-023-10353-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
MiRNAs are essential epigenetic modulators that can regulate protein expression. According to the principle of base complementary pairing, miRNA is partially or completely complementary to the 3'-UTR region of its target gene, by which it inhibits the translation of the targeted gene. This study investigated the role of miR-24-1-5p in clear cell renal cell carcinoma (ccRCC). Data in TCGA-KIRC denoted that miR-24-1-5p was under-expressed in ccRCC. Bioinformatics analysis predicted that its target gene was SHOX2, which was significantly expressed in cancer tissues. Dual luciferase assay verified the targeting relationship between miR-24-1-5p and SHOX2. Cell function experiments demonstrated that overexpression of miR-24-1-5p significantly inhibited SHOX2 level and the malignant phenotypes of ccRCC cells. The above results illustrated that miR-24-1-5p/SHOX2 axis was critical for the oncogenesis and development of ccRCC, which might be helpful for us to understand the mechanism and novel therapeutic methods of ccRCC.
Collapse
Affiliation(s)
- Jueyi Zhou
- Department of Oncology, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Peng Li
- Department of Urology Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Street, Liandu District, Lishui, 323000, China
| | - Jihong Feng
- Department of Oncology, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Qi Wu
- Department of Urology Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Street, Liandu District, Lishui, 323000, China
| | - Shengjie You
- Department of Urology Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Street, Liandu District, Lishui, 323000, China.
| |
Collapse
|
7
|
Lu H, Lin D. Diagnostic value of exfoliated tumor cells combined with DNA methylation in bronchoalveolar lavage fluid for lung cancer. Medicine (Baltimore) 2023; 102:e34955. [PMID: 37682182 PMCID: PMC10489317 DOI: 10.1097/md.0000000000034955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND To evaluate the diagnostic value of exfoliated tumor cells (ETCs) numbers combined with DNA methylation levels in bronchoalveolar lavage fluid (BALF) in lung cancer. METHODS BALF samples were collected from 43 patients with lung cancer and 23 with benign lung disease. ETCs were detected by the nano-enrichment method, and the methylation status of the short stature homeobox gene 2 (SHOX2) and the RAS association domain family 1, isoform A (RASSF1A) gene were detected by RT-PCR. The diagnostic value of each metric was evaluated by receiver operating characteristic curve analysis, specificity and sensitivity. RESULTS The sensitivity/specificity of RASSF1A and SHOX2 methylation detection were 44.12%/76.47% and 93.75%/87.50%, respectively. When "RASSF1A/SHOX2 methylation" was used as a positive result, the sensitivity increased to 88.24%, and the specificity decreased to 81.25%. When "RASSF1A + SHOX methylation" was used as positive, the sensitivity was reduced to 32.35%, but the specificity was increased to 100.00%. The sensitivity and specificity of ETCs detection in BALF were 89.47% and 16.67%, respectively. When "SHOX2/RASSF1A methylation + ETCs was used as a positive result, the sensitivity and specificity of the detection were 79.31% and 81.82%, respectively. When "SHOX2 + RASSF1A + ETCs" was used as positive, the sensitivity was 34.48% and the specificity was 90.91%. Receiver operating characteristic curve analysis showed that when SHOX2, RASSF1A methylation and ETCs were combined, the diagnostic sensitivity increased to 0.778. CONCLUSION ETCs counting in combination with SHOX2 and RASSF1A methylation assays in BALF samples has demonstrated excellent sensitivity for lung cancer diagnosis and is an effective complementary tool for clinical diagnosis of lung cancer.
Collapse
Affiliation(s)
- Huiling Lu
- Department of Pulmonary and Critical Care Medicine, Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Jiangsu, China
| | - Dang Lin
- Department of Pulmonary and Critical Care Medicine, Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Jiangsu, China
| |
Collapse
|
8
|
Huang W, Huang H, Zhang S, Wang X, Ouyang J, Lin Z, Chen P. A Novel Diagnosis Method Based on Methylation Analysis of SHOX2 and Serum Biomarker for Early Stage Lung Cancer. Cancer Control 2021; 27:1073274820969703. [PMID: 33167712 PMCID: PMC7791477 DOI: 10.1177/1073274820969703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objectives: Lung cancer (LC) is often accompanied by significant methylation
abnormalities. This study aimed to develop a decision tree (DT) accompanied
the stature homeobox 2 gene (SHOX2) / prostaglandin E receptor 4 (PTGER4)
gene DNA methylation with traditional tumor marker in the differential
diagnosis of benign and malignant lung nodule. Methods: We performed a study with 104 patients enrolled in the LC group and 36
patients in the benign lung diseases group. All the clinical data of these
patients were collected through electronic medical record. Total Methylation
(TM) status of both SHOX2 and PTGER4 was defined as methylation levels of
SHOX2 plus methylation levels of PTGER4. One-way analysis was used to
compare the concentrations of serum samples and t-test was used to compare
pairwise mean values between groups. Receiver operating curve (ROC) was used
to evaluate the diagnostic value. Furthermore, the strategy was validated in
19 LC patients and 11 patients with benign lung diseases. Results: There were significant differences between the concentration of
neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), cytokeratin
19 fragments (CYFRA21 -1) and the methylation levels of SHOX2, PTGER4 and TM
in lung benign diseases and cancer group. The AUCs of NSE, CEA, CYFRA21 -1,
Methylation SHOX2, Methylation PTGER4 and TM were 0.721 (95% CI:
0.627–0.816), 0.753 (95% CI: 0.673–0.833) and 0.778(95% CI: 0.700–0.856),
0.851(0.786-0.916), 0.847(0.780-0.913) and 0.861(0.800-0.922) respectively.
We developed a DT model with TM and CYFRA21 -1 used in this study, and the
area under the curve (AUC) of DT was 0.921 and the sensitivity up to 0.856.
In the validation cohort, the AUC of SHOX2, PTGER4 and TM was also much
higher than traditional serum markers. Conclusions: Our results indicated that the DT model calculated from the TM and CYFRA21 -1
can accurately classify LC and benign diseases, which showed better
diagnostic performance than traditional serum parameter.
Collapse
Affiliation(s)
- Wenhai Huang
- Department of Thoracic Surgery, Jiangmen Centre Hospital, Jiangmen, Guangdong, China
| | - Hao Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuishen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xueping Wang
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Juan Ouyang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhichao Lin
- Department of Thoracic Surgery, Jiangmen Centre Hospital, Jiangmen, Guangdong, China
| | - Peisong Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Li N, Zeng Y, Huang J. Signaling pathways and clinical application of RASSF1A and SHOX2 in lung cancer. J Cancer Res Clin Oncol 2020; 146:1379-1393. [PMID: 32266538 DOI: 10.1007/s00432-020-03188-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND An increasing number of studies have focused on the early diagnostic value of the methylation of RASSF1A and SHOX2 in lung cancer. However, the intricate cellular events related to RASSF1A and SHOX2 in lung cancer are still a mystery. For researchers and clinicians aiming to more profoundly understand the diagnostic value of methylated RASSF1A and SHOX2 in lung cancer, this review will provide deeper insights into the molecular events of RASSF1A and SHOX2 in lung cancer. METHODOLOGY We searched for relevant publications in the PubMed and Google Scholar databases using the keywords "RASSF1A", "SHOX2" and "lung cancer" etc. First, we reviewed the RASSF1A and SHOX2 genes, from their family structures to the functions of their basic structural domains. Then we mainly focused on the roles of RASSF1A and SHOX2 in lung cancer, especially on their molecular events in recent decades. Finally, we compared the value of measuring RASSF1A and SHOX2 gene methylation with that of the common methods for the diagnosis of lung cancer patients. RESULTS The RASSF1A and SHOX2 genes were confirmed to be regulators or effectors of multiple cancer signaling pathways, driving tumorigenesis and lung cancer progression. The detection of RASSF1A and SHOX2 gene methylation has higher sensitivity and specificity than other commonly used methods for diagnosing lung cancer, especially in the early stage. CONCLUSIONS The RASSF1A and SHOX2 genes are critical for the processes of tumorigenesis, development, metastasis, drug resistance, and recurrence in lung cancer. The combined detection of RASSF1A and SHOX2 gene methylation was identified as an excellent method for the screening and surveillance of lung cancer that exhibits high sensitivity and specificity.
Collapse
Affiliation(s)
- Nanhong Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, China
| | - Jian Huang
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China.
- Pathological Diagnosis and Research Center, Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
10
|
Yu Q, Cao S, Tang H, Li J, Guo W, Zhang S. Clinical significance of aberrant DEUP1 promoter methylation in hepatocellular carcinoma. Oncol Lett 2019; 18:1356-1364. [PMID: 31423198 PMCID: PMC6607367 DOI: 10.3892/ol.2019.10421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/07/2019] [Indexed: 01/23/2023] Open
Abstract
Accumulating studies have shown that methylation of tumor suppressor genes plays an important role in tumorigenesis. Deuterosome assembly protein 1 (DEUP1) has been implicated as a suppressor gene in some tumors and promoter methylation led to silencing of its expression. However, the roles of DEUP1 promoter methylation and expression in hepatocellular carcinoma (HCC) are not clear. In the present study, the expression and methylation of the DEUP1 promoter in HCC was investigated and the correlations with HCC occurrence and development were explored. A total of 60 HCC tumor and adjacent non-tumor tissues were included in this study. Reverse transcription-polymerase chain reaction, bisulfite PCR sequencing, immunohistochemistry and western blotting were applied to detect the methylation status of the DEUP1 promoter and its expression, and to analyze their associations with clinicopathological data. The results showed that the mRNA and protein expression of DEUP1 in adjacent non-tumor tissues was significantly increased compared with in the HCC tissues. DEUP1 promoter methylation was detected in 46/60 (76.7%) tumor tissues and there was a negative correlation between promoter methylation and DEUP1 protein expression (P<0.05). Analysis of the clinicopathological data revealed that the mRNA and protein expression of DEUP1, and its promoter methylation status, was associated with tumor node metastasis stage and tumor differentiation. Taken together, the results of the present study suggested that methylation of the DEUP1 promoter maybe an important mechanism for gene inactivation and has a critical role in the occurrence and development of liver cancer.
Collapse
Affiliation(s)
- Qiwen Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shengli Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongwei Tang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
11
|
Lan VTT, Trang VL, Ngan NT, Son HV, Toan NL. An Internal Control for Evaluating Bisulfite Conversion in the Analysis of Short Stature Homeobox 2 Methylation in Lung Cancer. Asian Pac J Cancer Prev 2019; 20:2435-2443. [PMID: 31450918 PMCID: PMC6852808 DOI: 10.31557/apjcp.2019.20.8.2435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: The methylation status is considered as powerful diagnostic, prognostic, and predictive biomarkers. However, the limited DNA amount and conversion efficiency after bisulfite treatment are considerable hindrances in quantitative methylation analysis. In this study, we designed an artificial internal control (IC) system that contained the cytosine-free fragment (CFF) following CpG sequences of the SHOX2 promoter whose methylation status has been described as a valuable biomarker of lung cancer. Its performance in quantifying DNA recovery and bisulfite conversion efficiency as well as in detecting false-positive SHOX2 methylation was determined on samples from lung cancer patients. Material and Methods: The IC system is composed of two pConIC and pUnIC plasmids that both contain a cytosine-free (CF) sequence derived from the CFF and the CpG containing SHOX2 sequences. They are identical in sequence, except that in the ConIC insert, all cytosines have been converted into thymines. Thus, the ConIC can be used as calibrator of 100% bisulfite conversion efficiency, while the UnIC is the indicator in order to evaluate the DNA recovery, bisulfite conversion efficiency of the SHOX2 promoter sequence by quantitative real time PCR. Results: The copy number of the target sequences impacted on both DNA recovery rates and bisulfite conversion efficiency. An amount of 0.005 ng pUnIC (106 copies) showed recovery rate of 18%, similar to that of pConIC, and a bisulfite conversion efficiency of the SHOX2 reaching 98.7%. On the contrary, higher copy number of pUnIC showed incomplete conversion (<85%) and over recovery (~42%). Using this calibrator/indicator couple, we were able to detect false-positive SHOX2 methylation (3.77% instead of 0.03%) due to incomplete bisulfite conversion.Conclusion: Our results proposed a customizable internal control using the ConIC/UnIC as calibrator/indicator to quantify simultaneously and accurately the DNA recovery and bisulfite conversion efficiencies of individual sequence as well as whole genome in methylation assays, thus promoting the validation of standardized clinical DNA methylation biomarker values to progress toward clinical applications
Collapse
Affiliation(s)
| | - Vu Lan Trang
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, PSL Research University, CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), Paris, France
| | | | | | - Nguyen Linh Toan
- Department of Pathophysiology, Medical University, Ha Dong, Vietnam
| |
Collapse
|
12
|
Conway K, Edmiston SN, Parker JS, Kuan PF, Tsai YH, Groben PA, Zedek DC, Scott GA, Parrish EA, Hao H, Pearlstein MV, Frank JS, Carson CC, Wilkerson MD, Zhao X, Slater NA, Moschos SJ, Ollila DW, Thomas NE. Identification of a Robust Methylation Classifier for Cutaneous Melanoma Diagnosis. J Invest Dermatol 2018; 139:1349-1361. [PMID: 30529013 DOI: 10.1016/j.jid.2018.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Early diagnosis improves melanoma survival, yet the histopathological diagnosis of cutaneous primary melanoma can be challenging, even for expert dermatopathologists. Analysis of epigenetic alterations, such as DNA methylation, that occur in melanoma can aid in its early diagnosis. Using a genome-wide methylation screening, we assessed CpG methylation in a diverse set of 89 primary invasive melanomas, 73 nevi, and 41 melanocytic proliferations of uncertain malignant potential, classified based on interobserver review by dermatopathologists. Melanomas and nevi were split into training and validation sets. Predictive modeling in the training set using ElasticNet identified a 40-CpG classifier distinguishing 60 melanomas from 48 nevi. High diagnostic accuracy (area under the receiver operator characteristic curve = 0.996, sensitivity = 96.6%, and specificity = 100.0%) was independently confirmed in the validation set (29 melanomas, 25 nevi) and other published sample sets. The 40-CpG melanoma classifier included homeobox transcription factors and genes with roles in stem cell pluripotency or the nervous system. Application of the 40-CpG melanoma classifier to the diagnostically uncertain samples assigned melanoma or nevus status, potentially offering a diagnostic tool to assist dermatopathologists. In summary, the robust, accurate 40-CpG melanoma classifier offers a promising assay for improving primary melanoma diagnosis.
Collapse
Affiliation(s)
- Kathleen Conway
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Dermatology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center (LCCC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Sharon N Edmiston
- Lineberger Comprehensive Cancer Center (LCCC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center (LCCC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Pei Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center (LCCC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pamela A Groben
- Department of Dermatology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel C Zedek
- Department of Dermatology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Glynis A Scott
- Department of Dermatology, University of Rochester School of Medicine, Rochester, New York, USA; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Eloise A Parrish
- Lineberger Comprehensive Cancer Center (LCCC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Honglin Hao
- Department of Dermatology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michelle V Pearlstein
- Department of Dermatology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jill S Frank
- Lineberger Comprehensive Cancer Center (LCCC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Craig C Carson
- Department of Dermatology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew D Wilkerson
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Xiaobei Zhao
- Lineberger Comprehensive Cancer Center (LCCC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathaniel A Slater
- Department of Dermatology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Stergios J Moschos
- Lineberger Comprehensive Cancer Center (LCCC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David W Ollila
- Lineberger Comprehensive Cancer Center (LCCC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nancy E Thomas
- Department of Dermatology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center (LCCC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Tuo L, Sha S, Huayu Z, Du K. P16 INK4a gene promoter methylation as a biomarker for the diagnosis of non-small cell lung cancer: An updated meta-analysis. Thorac Cancer 2018; 9:1032-1040. [PMID: 29927090 PMCID: PMC6068431 DOI: 10.1111/1759-7714.12783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND This meta-analysis was conducted to investigate the diagnostic performance of P16INK4a gene promoter methylation as a biomarker of non-small cell lung cancer (NSCLC). METHODS Two reviewers independently searched the Web of Science, PubMed, Cochrane, Embase, China National Knowledge Infrastructure, and Chinese Biomedical Literature databases. Publications relevant to P16INK4a gene promoter methylation in serum or bronchoalveolar fluid/sputum were screened and included in this meta-analysis. Pooled diagnostic sensitivity, specificity, and symmetric receiver operating characteristic curve were calculated. RESULTS Twenty-six publications with 1768 lung cancer cases and 1323 controls were included. The pooled sensitivity, specificity, positive and negative likelihood ratios, and diagnostic odds ratio were 0.46 (95% confidence interval [CI] 0.43-0.48), 0.90 (95% CI 0.88-0.91), 6.33 (95% CI 3.89-10.30), 0.57 (95% CI 0.50-0.65) and 10.72 (95% CI 6.94-16.56), respectively, for P16INK4a gene promoter methylation as a biomarker for the diagnosis of NSCLC. The area under the symmetric receiver operating characteristic curve was 0.75 with a standard error of 0.004. No publication bias was detected via line regression test (t = 0.95; P = 0.35) and Begg's funnel plot. CONCLUSION P16INK4a gene promoter methylation detection in serum or bronchoalveolar fluid/sputum may be a potential biomarker for NSCLC diagnosis; however, the sensitivity was relatively low, which is not suitable for NSCLC screening.
Collapse
Affiliation(s)
- Lei Tuo
- Department of Thoracic and Cardiovascular SurgeryWeifang Yidu Central Hospital QingzhouWeifangChina
| | - Sha Sha
- Department of Thoracic and Cardiovascular SurgeryWeifang Yidu Central Hospital QingzhouWeifangChina
| | - Zhang Huayu
- Department of Spine and TraumaWeifang Yidu Central Hospital QingzhouWeifangChina
| | - Ke Du
- Department of Thoracic SurgeryLiaocheng People's Hospital Liaocheng Clinical School of Taishan Medical UniversityLiaochengChina
| |
Collapse
|
14
|
Chiodi I, Scovassi AI, Mondello C. Circulating Molecular and Cellular Biomarkers in Cancer. TRANSLATIONAL TOXICOLOGY AND THERAPEUTICS: WINDOWS OF DEVELOPMENTAL SUSCEPTIBILITY IN REPRODUCTION AND CANCER 2017:607-656. [DOI: 10.1002/9781119023647.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Zhang C, Yu W, Wang L, Zhao M, Guo Q, Lv S, Hu X, Lou J. DNA Methylation Analysis of the SHOX2 and RASSF1A Panel in Bronchoalveolar Lavage Fluid for Lung Cancer Diagnosis. J Cancer 2017; 8:3585-3591. [PMID: 29151944 PMCID: PMC5687174 DOI: 10.7150/jca.21368] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Introduction: Currently the majority of lung cancer patients are diagnosed as advanced diseases for no sensitive and specific biomarkers exist, noninvasive biomarkers with high sensitivity and specificity are urgently needed in lung cancer diagnosis. Bronchoscopy is a standard procedure of the diagnostic work-up of patients with suspected lung cancer despite of the limited diagnostic accuracy. Besides, epigenetic changes through DNA methylation play an important role in tumorigenesis. Thus, we examined the aberrant methylation of the SHOX2 and RASSF1A in bronchoalveolar lavage fluid (BALF) in comparing with conventional cytology examination and serum CEA in order to evaluate the new diagnostic method. Patients and Methods: BALF and serum samples were collected from 322 patients at the time of diagnosis, 284 of them were pathologically confirmed lung cancer, 35 were benign lung diseases and 3 were malignancies in other systems. For all of the 322 patients, the methylation status of the SHOX2 and RASSF1A gene were detected by a new RT-PCR platform and then confirmed by sanger sequencing. Serum CEA were detected using electrochemiluminescence immunoassay. Results: Profiling data showed the consistency of RT-PCR and sanger sequencing in detecting the methylation of the SHOX2 and RASSF1A. Besides, the combination of SHOX2 and RASSF1A methylation in BALF yielded a diagnostic sensitivity of 81.0% and specificity of 97.4%. When compared with established cytology examination (sensitivity: 68.3%, specificity: 97.4%) and serum biomarker carcinoembryonic antigen (CEA) (sensitivity: 30.6%, specificity: 100.0%), the SHOX2 and RASSF1A methylation panel showed the highest diagnostic efficiency. Notably, the combination of cytology and the SHOX2 and RASSF1A methylation panel could significantly improve the diagnostic efficacy. Conclusion: The methylation analysis of the SHOX2 and RASSF1A panel in BALF with RT-PCR achieved a satisfactory sensitivity and specificity in lung cancer diagnosis, especially in an early stage. It could be used as a promising noninvasive biomarker for auxiliary diagnosis of lung cancer.
Collapse
Affiliation(s)
- Chenzi Zhang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenjun Yu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mingna Zhao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiaomei Guo
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shaogang Lv
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaomeng Hu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
16
|
Mžik M, Chmelařová M, John S, Laco J, Slabý O, Kiss I, Bohovicová L, Palička V, Nekvindová J. Aberrant methylation of tumour suppressor genes WT1, GATA5 and PAX5 in hepatocellular carcinoma. Clin Chem Lab Med 2017; 54:1971-1980. [PMID: 27171388 DOI: 10.1515/cclm-2015-1198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aberrant hypermethylation of tumour suppressor genes (TSGs) occurring in hepatocellular carcinoma (HCC) could provide a mean of molecular characterisation of this cancer. The aim of this study was to investigate promoter methylation and gene expression of selected TSGs in HCC to identify candidate genes for further validation as potential biomarkers. METHODS Methylation-specific multiplex ligation-dependent probe amplification method was used to measure the methylation status of 25 TSGs in 49 HCC samples and 36 corresponding non-cancerous liver tissue samples. Relative expression of the differentially methylated genes was assessed at the mRNA level using quantitative PCR. RESULTS We observed a significantly higher methylation in genes WT1, PAX5, PAX6, PYCARD and GATA5 in HCC compared with control samples. The expression of PAX5 was significantly decreased by methylation; conversely methylation of WT1 was associated with higher mRNA levels. Methylation of GATA5 was significantly associated with overall survival and methylation of WT1 and PAX5 significantly varied between patients with ALBI score 1 vs. 2+3. Moreover, PAX5 was significantly more methylated in patients with tumour grade 2+3 vs. grade 1, and methylation of the PAX5 correlated with the patient's age at the time of diagnosis. CONCLUSIONS HCC evince aberrant promoter methylation of WT1, PAX5, PAX6, PYCARD and GATA5 genes. Correlation between GATA5, WT1 and PAX5 methylation and clinical/histological parameters is suggestive of applicability of these markers in non-invasive (epi)genetic testing in HCC.
Collapse
|
17
|
Yi J, Jin L, Chen J, Feng B, He Z, Chen L, Song H. MiR-375 suppresses invasion and metastasis by direct targeting of SHOX2 in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2017; 49:159-169. [PMID: 28069583 DOI: 10.1093/abbs/gmw131] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Indexed: 12/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common histological type in China. MicroRNAs are endogenously expressed in mammals and play a significant role in tumor invasion and metastasis by targeting potential downstream genes. In the present study, microarray analysis showed that miR-375 expression was distinctly downregulated in ESCC compared with that in normal esophageal epithelium tissues. Then, luciferase reporter assay showed that SHOX2 was the direct downstream target of miR-375 and this interaction was confirmed by the rescue experiments. Quantitative polymerase chain reaction results also showed that SHOX2 expression was upregulated in ESCC cells and tissues. Further analysis showed that SHOX2 induced proliferation, invasion, and metastasis of ESCC both in vivo and in vitro. Moreover, the interaction between miR-375 and SHOX2 affected the epithelial-to-mesenchymal transition. We conclude that miR-375 may suppress invasion and metastasis of ESCC by directly targeting SHOX2. The miR-375/SHOX2 axis may be a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jun Yi
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Li Jin
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Zhenyue He
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
18
|
Guéguen Y, Roy L, Hornhardt S, Badie C, Hall J, Baatout S, Pernot E, Tomasek L, Laurent O, Ebrahimian T, Ibanez C, Grison S, Kabacik S, Laurier D, Gomolka M. Biomarkers for Uranium Risk Assessment for the Development of the CURE (Concerted Uranium Research in Europe) Molecular Epidemiological Protocol. Radiat Res 2017; 187:107-127. [DOI: 10.1667/rr14505.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Semaan A, van Ellen A, Meller S, Bergheim D, Branchi V, Lingohr P, Goltz D, Kalff JC, Kristiansen G, Matthaei H, Pantelis D, Dietrich D. SEPT9 and SHOX2 DNA methylation status and its utility in the diagnosis of colonic adenomas and colorectal adenocarcinomas. Clin Epigenetics 2016; 8:100. [PMID: 27660666 PMCID: PMC5028994 DOI: 10.1186/s13148-016-0267-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023] Open
Abstract
Background Colorectal cancer (CRC) appear to arise from precursor lesions in a well-characterized adenoma-carcinoma sequence. Significant efforts have been invested to develop biomarkers that identify early adenocarcinomas and adenomas with high-grade dysplasia, since these are believed to harbor a particularly high risk for malignant transition and thus require resection. Promoter methylation of SEPT9 and SHOX2 has been suggested as a biomarker for various solid malignant tumors. Hence, the present study aimed to test their biomarker potential in CRC and precursor lesions. Results Assessment of promoter methylation of SEPT9 distinguished adenomas and CRC from controls as well as advanced from non-advanced adenomas (all p < 0.001). Correspondingly, SHOX2 methylation levels in adenomas and colorectal carcinomas were significantly higher compared to those in normal control tissues (p < 0.001). Histologic transition from adenomas to CRC was paralleled by amplification of the SEPT9 gene locus. Conclusions SEPT9/SHOX2 methylation assays may help to distinguish colorectal cancer and adenomas from normal and inflammatory colonic tissue, as well as advanced from non-advanced adenomas. Further studies need to validate these findings before introduction in clinical routine.
Collapse
Affiliation(s)
- Alexander Semaan
- Department of General, Visceral, Thoracic and Vascular Surgery, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Anne van Ellen
- Institute of Pathology, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Sebastian Meller
- Institute of Pathology, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Dominik Bergheim
- Institute of Pathology, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Vittorio Branchi
- Department of General, Visceral, Thoracic and Vascular Surgery, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Philipp Lingohr
- Department of General, Visceral, Thoracic and Vascular Surgery, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Diane Goltz
- Institute of Pathology, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Jörg C Kalff
- Department of General, Visceral, Thoracic and Vascular Surgery, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Hanno Matthaei
- Department of General, Visceral, Thoracic and Vascular Surgery, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Dimitrios Pantelis
- Department of General, Visceral, Thoracic and Vascular Surgery, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| |
Collapse
|
20
|
Zhao QT, Guo T, Wang HE, Zhang XP, Zhang H, Wang ZK, Yuan Z, Duan GC. Diagnostic value of SHOX2 DNA methylation in lung cancer: a meta-analysis. Onco Targets Ther 2015; 8:3433-9. [PMID: 26640383 PMCID: PMC4657794 DOI: 10.2147/ott.s94300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The diagnostic value of SHOX2 DNA methylation in patients with lung cancer remains controversial. Thus, we performed a systematic review and meta-analysis to assess diagnostic accuracy of SHOX2 DNA methylation in the lymph node, bronchial aspirates, pleural effusion, plasma, and tumor tissue for lung cancer. We conducted a comprehensive literature search in PubMed, Ovid, the Cochrane library, and Web of Science databases in May 2015. The diagnostic sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and summary receiver operating characteristic (SROC) curve were pooled using STATA 12.0 software. A total of 2,296 subjects included 1,129 lung cancer patients in eight studies were recruited in this meta-analysis. The summary estimates for SHOX2 DNA methylation in the diagnosis of lung cancer in these studies were pooled SEN =0.70 (95% confidence interval [CI]: 0.46–0.87), SPE =0.96 (95% CI: 0.91–0.99), PLR 20.01 (95% CI: 6.96–57.52), NLR 0.31 (95% CI: 0.15–0.64), and DOR 65.11 (95% CI: 13.10–323.61), and the area under the curve (AUC) was 0.96 (95% CI: 0.94–0.97). SHOX2 DNA methylation has greater diagnostic value in detecting lung cancer. In addition, considering the potential publication bias and high heterogeneity, further research studies with more well-designed and large sample sizes are needed in the future.
Collapse
Affiliation(s)
- Qing-Tao Zhao
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Tao Guo
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Hui-En Wang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Xiao-Peng Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Hua Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Zhi-Kang Wang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Zheng Yuan
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Guo-Chen Duan
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|