1
|
Lazaridis A, Katifelis H, Kalampokas E, Lambropoulou D, Aravantinos G, Gazouli M, Vlahos NF. Utilization of miRNAs as Biomarkers for the Diagnosis, Prognosis, and Metastasis in Gynecological Malignancies. Int J Mol Sci 2024; 25:11703. [PMID: 39519256 PMCID: PMC11546551 DOI: 10.3390/ijms252111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Gynecological cancer is a term referring to malignancies that typically involve ovarian, cervical, uterine, vaginal, and vulvar cancer. Combined, these cancers represent major causes of morbidity and mortality in women with a heavy socioeconomic impact. MiRNAs are small non-coding RNAs that are intensively studied in the field of cancer and changes in them have been linked to a variety of processes involved in cancer that range from tumorigenesis to prognosis and metastatic potential. This review aims to summarize the existing literature that has linked miRNAs with each of the female malignancies as potential biomarkers in diagnosis (circulating miRNAs), in tumor histology and prognosis (as tissue biomarkers), and for local (lymph node) and distant metastatic disease.
Collapse
Affiliation(s)
- Alexandros Lazaridis
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 11528 Athens, Greece; (A.L.); (E.K.); (N.F.V.)
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece;
| | - Emmanouil Kalampokas
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 11528 Athens, Greece; (A.L.); (E.K.); (N.F.V.)
| | | | | | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece;
| | - Nikos F. Vlahos
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 11528 Athens, Greece; (A.L.); (E.K.); (N.F.V.)
| |
Collapse
|
2
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Choi PW, Liu TL, Wong CW, Liu SK, Lum YL, Ming WK. The Dysregulation of MicroRNAs in the Development of Cervical Pre-Cancer—An Update. Int J Mol Sci 2022; 23:ijms23137126. [PMID: 35806128 PMCID: PMC9266862 DOI: 10.3390/ijms23137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Globally in 2020, an estimated ~600,000 women were diagnosed with and 340,000 women died from cervical cancer. Compared to 2012, the number of cases increased by 7.5% and the number of deaths increased by 17%. MiRNAs are involved in multiple processes in the pathogenesis of cervical cancer. Dysregulation of miRNAs in the pre-stage of cervical cancer is the focus of this review. Here we summarize the dysregulated miRNAs in clinical samples from cervical pre-cancer patients and relate them to the early transformation process owing to human papillomavirus (HPV) infection in the cervical cells. When HPV infects the normal cervical cells, the DNA damage response is initiated with the involvement of HPV’s E1 and E2 proteins. Later, cell proliferation and cell death are affected by the E6 and E7 proteins. We find that the expressions of miRNAs in cervical pre-cancerous tissue revealed by different studies seldom agreed with each other. The discrepancy in sample types, samples’ HPV status, expression measurement, and methods for analysis contributed to the non-aligned results across studies. However, several miRNAs (miR-34a, miR-9, miR-21, miR-145, and miR-375) were found to be dysregulated across multiple studies. In addition, there are hints that the DNA damage response and cell growth response induced by HPV during the early transformation of the cervical cells are related to these miRNAs. Currently, no review articles analyse the relationship between the dysregulated miRNAs in cervical pre-cancerous tissue and their possible roles in the early processes involving HPV’s protein encoded by the early genes and DNA damage response during normal cell transformation. Our review provides insight on spotting miRNAs involved in the early pathogenic processes and pointing out their potential as biomarker targets of cervical pre-cancer.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Tin Lun Liu
- International School, Jinan University, Guangzhou 510632, China;
| | - Chun Wai Wong
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Sze Kei Liu
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Yick-Liang Lum
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Wai-Kit Ming
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
- Correspondence: ; Tel.: +852-3442-6956
| |
Collapse
|
4
|
Role of microRNAs (MiRNAs) as biomarkers of cervical carcinogenesis: a systematic review. Obstet Gynecol Sci 2021; 64:419-436. [PMID: 34384196 PMCID: PMC8458608 DOI: 10.5468/ogs.21123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
We performed a systematic review to identify the role of microRNAs (miRNAs) as biomarkers in the progression of cervical precancerous lesions. A comprehensive search of the Cochrane Controlled Register of Trials, PubMed, ScienceDirect, and Embase databases was performed for articles published between January 2010 and June 2020. The following Medical Subject Headings (MeSH) terms were searched: “microRNA” and “cervical” and “lesion.” All study designs that aimed to evaluate the correlation of miRNA expression with different precancerous cervical staging and/ or cervical cancer were included, except for case reports and case series. Approximately 82 individual miRNAs were found to be significant in differentiating the stages of cervical carcinogenesis. Among the miRNAs, miR-21 is the most prevalent, and it is consistently upregulated progressively from normal cervical to worsening cervical lesion stages in both cell and serum samples. miR-205 has been shown to have a higher specificity than human papilloma virus testing in predicting the absence of high-grade squamous intraepithelial lesions (HSILs) in exfoliated cell samples. The tumor suppressor miRNAs miR-34, let-7, miR-203 miR-29, and miR-375 were significantly downregulated in low-grade squamous intraepithelial lesions, HSILs, and cervical cancer. We found significant dysregulated miRNAs in cervical carcinogenesis with their dynamic expression changes and ability to detect viral persistency, risk prediction of low-grade lesions (cervical intraepithelial neoplasia [CIN] 2) to high-grade lesions (CIN 3), and progression of CIN 3 to cancer. Their ability to discriminate HSILs from non-dysplastic lesions has potential implications in early diagnosis and reducing overtreatment of otherwise regressive early preinvasive lesions.
Collapse
|
5
|
Berti FCB, Mathias C, Garcia LE, Gradia DF, de Araújo-Souza PS, Cipolla GA, de Oliveira JC, Malheiros D. Comprehensive analysis of ceRNA networks in HPV16- and HPV18-mediated cervical cancers reveals XIST as a pivotal competing endogenous RNA. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166172. [PMID: 34048924 DOI: 10.1016/j.bbadis.2021.166172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Cervical cancer (CC) is one of the most common cancers in women worldwide, being closely related to high-risk human papillomavirus (HR-HPVs). After a particular HR-HPV infects a cervical cell, transcriptional changes in the host cell are expected, including the regulation of lncRNAs, miRNAs, and mRNAs. Such transcripts may work independently or integrated in complex molecular networks - as in competing endogenous RNA (ceRNA) networks. In our research, we gathered transcriptome data from samples of HPV16/HPV18 cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), from The Cancer Genome Atlas (TCGA) project. Using GDCRNATools, we identified ceRNA networks that differentiate HPV16- from HPV18-mediated CESC. For HPV16-CESC, three lncRNA-mRNA co-expressed pairs were reported, all led by the X-inactive specific transcript (XIST): XIST | DLG5, XIST | LGR4, and XIST | ZNF81. The XIST | LGR4 and XIST | ZNF81 pairs shared 11 miRNAs, suggesting an increased impact on their final biological effect. XIST also stood out as an important lncRNA in HPV18-CESC, leading 35 of the 42 co-expressed pairs. Some mRNAs, such as ADAM9 and SLC38A2, emerged as important players in the ceRNA regulatory networks due to sharing a considerable amount of miRNAs with XIST. Furthermore, some XIST-associated axes, namely XIST | miR-23a-3p | LGR4 and XIST | miR-30b-5p or miR-30c-5p or miR-30e-5p I ADAM9, had a significant impact on the overall survival of HPV16- and HPV18-CESC patients, respectively. Together, these data suggest that XIST has an important role in HPV-mediated tumorigenesis, which may implicate different molecular signatures between HPV16 and HPV18-associated tumors.
Collapse
Affiliation(s)
- Fernanda Costa Brandão Berti
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Carolina Mathias
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Leandro Encarnação Garcia
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Daniela Fiori Gradia
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Patrícia Savio de Araújo-Souza
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Immunogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Gabriel Adelman Cipolla
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Jaqueline Carvalho de Oliveira
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Danielle Malheiros
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil.
| |
Collapse
|
6
|
Aksamentov AK, Melnikova NV, Kolyshkina NA, Kucherova ON, Baklaushev VP. Additional diagnostic capabilities in the practice of a PAP-test using liquid-based cytology. КЛИНИЧЕСКАЯ ПРАКТИКА 2021; 12:82-89. [DOI: 10.17816/clinpract64982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of oncogenic strains of human papillomavirus in the development of cervical cancer is currently not in doubt. In cervical cancer screening, a co-testing strategy is used, in which cytology and HPV testing are performed. When performing a cytological examination by liquid-based cytology, it is possible to conduct additional diagnostic studies that can be used to more effectively sort patients in order to optimize the volume of diagnostic and therapeutic measures. The article highlights the possibilities of diagnostic tests based on the assessment of microRNA and mRNA expression, as well as tests based on the analysis of DNA methylation from the cytological material. The introduction of new molecular genetic predictors of the cervical cancer development into clinical practice can increase the effectiveness of currently used screening programs.
Collapse
|
7
|
Wu Q, Liu P, Lao G, Liu Y, Zhang W, Ma C. Comprehensive Analysis of circRNA-miRNA-mRNA Network in Cervical Squamous Cell Carcinoma by Integrated Analysis. Onco Targets Ther 2020; 13:8641-8650. [PMID: 32922040 PMCID: PMC7457817 DOI: 10.2147/ott.s254323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/26/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose Cervical squamous cell carcinoma (CSCC) seriously affects women’s health worldwide, and it is of great significance to illuminate the specific role of circRNAs in CSCC. Materials and Methods Three mRNA datasets, two miRNA datasets and one circRNA dataset of CSCC, downloaded from GEO, were utilized in this study. Differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and circRNAs (DEcircRNAs) were identified, and a ceRNA (DEcircRNA-DEmiRNA-DEmRNA) regulatory network was constructed. GO and pathway analyses of DEcircRNAs and DEmRNAs in the ceRNA regulatory network were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) validation of the expression of the selected DEmRNAs, DEmiRNAs and DEcircRNAs was performed. Results A total of 1356 DEmRNAs, 13 DEmiRNAs and 77 DEcircRNAs were obtained. The ceRNA network contained 3 circRNA-miRNA pairs and 158 miRNA-mRNA pairs, including 3 circRNAs, 3 miRNAs, and 138 mRNAs. Functional annotation of DEmRNAs in the ceRNA regulatory network revealed that these DEmRNAs were significantly enriched in cell cycle, p53 signalling pathway and DNA replication. The qRT-PCR results were generally consistent with those of our integrated analysis. Conclusion In conclusion, we speculate that the regulation of the hsa_circ_0000069/hsa-miR-125b-5p/CDKN2A and hsa_circ_0020594/hsa-let-7c-5p/CCNB2 axes may be involved in CSCC.
Collapse
Affiliation(s)
- Qiongwei Wu
- Gynecology Department, Changning Maternity and Infant Health Hospital, Shanghai, People's Republic of China
| | - Ping Liu
- Gynecology Department, Changning Maternity and Infant Health Hospital, Shanghai, People's Republic of China
| | - Guoying Lao
- Gynecology Department, Changning Maternity and Infant Health Hospital, Shanghai, People's Republic of China
| | - Yu Liu
- Gynecology Department, Changning Maternity and Infant Health Hospital, Shanghai, People's Republic of China
| | - Wenying Zhang
- Gynecology Department, Changning Maternity and Infant Health Hospital, Shanghai, People's Republic of China
| | - Chengbin Ma
- Gynecology Department, Changning Maternity and Infant Health Hospital, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Yap T, Seers C, Koo K, Cheng L, Vella LJ, Hill AF, Reynolds E, Nastri A, Cirillo N, McCullough M. Non-invasive screening of a microRNA-based dysregulation signature in oral cancer and oral potentially malignant disorders. Oral Oncol 2019; 96:113-120. [PMID: 31422202 DOI: 10.1016/j.oraloncology.2019.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION We have previously shown that oral swirls are a robust source of microRNA protected by extracellular vesicles, potentially useful to detect oral squamous cell carcinoma (OSCC)-associated molecular aberration. OBJECTIVES To study a developed dysregulation score and risk classification algorithm based upon a panel of OSCC-associated microRNA in oral swirls from individuals with OSCC and oral potentially malignant disorders (OPMDs). MATERIALS AND METHODS An OSCC-associated panel of 5 microRNAs (miR-24; miR-21; miR-99a; let-7c; miR-100;) was quantified by qPCR in 190 individuals with and without mucosal abnormalities, including OSCC (n = 53) and OPMDs (n = 74). Each sample was analyzed using a developed dysregulation score (dSCORE) and risk classification algorithm, allocating a LOW- or HIGH-RISK score. The influence of demographic, systemic, oral health and mucosal disease factors on the developed test was analyzed. RESULTS MicroRNA for analysis can be predictably isolated from oral swirls sourced from individuals with a range of demographic, systemic and oral health findings. Utilizing the presence of HIGH-RISK identified OSCC patients with 86.8% sensitivity and 81.5% specificity. Older age and female gender were associated with higher dSCOREs and higher proportions of HIGH-RISK classification amongst individuals with no mucosal abnormalities. The dSCOREs for all subgroups of OPMDs were significantly different from the OSCC group. CONCLUSION This is the first comparison of microRNA sourced from oral swirls from individuals with OPMDs with individuals with and without OSCC. A HIGH-RISK dysregulation signature was found to be accurate in indicating the presence of OSCC and exampled to parallel malignant transformation.
Collapse
Affiliation(s)
- T Yap
- Melbourne Dental School, University of Melbourne, Victoria, Australia.
| | - C Seers
- Melbourne Dental School, University of Melbourne, Victoria, Australia; Oral Health Cooperative Research Centre, Melbourne, Victoria, Australia
| | - K Koo
- Department of Surgery, Royal Melbourne Hospital, Victoria, Australia
| | - L Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - L J Vella
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - A F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - E Reynolds
- Melbourne Dental School, University of Melbourne, Victoria, Australia; Oral Health Cooperative Research Centre, Melbourne, Victoria, Australia
| | - A Nastri
- Department of Oral and Maxillofacial Surgery, Royal Melbourne Hospital, Victoria, Australia
| | - N Cirillo
- Melbourne Dental School, University of Melbourne, Victoria, Australia; Oral Health Cooperative Research Centre, Melbourne, Victoria, Australia
| | - M McCullough
- Melbourne Dental School, University of Melbourne, Victoria, Australia; Oral Health Cooperative Research Centre, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Pardini B, De Maria D, Francavilla A, Di Gaetano C, Ronco G, Naccarati A. MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer 2018; 18:696. [PMID: 29945565 PMCID: PMC6020348 DOI: 10.1186/s12885-018-4590-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Invasive cervical cancer (ICC) is caused by high-risk human papillomavirus types (HR-HPVs) and is usually preceded by a long phase of intraepithelial neoplasia (CIN). Before invasion, (epi) genetic changes, potentially applicable as molecular markers within cervical screening, occur in HPV host cells. Epigenetic alterations, such as dysregulation of microRNA (miRNA) expression, are frequently observed in ICC. The mechanisms and role of miRNA dysregulation in cervical carcinogenesis are still largely unknown. METHODS We provide an overview of the studies investigating miRNA expression in relation to ICC progression, highlighting their common outcomes and their weaknesses/strengths. To achieve this, we systematically searched through Pubmed database all articles between January 2010 and December 2017. RESULTS From the 24 studies retrieved, miR-29a and miR-21 are the most frequently down- and up-regulated in ICC progression, respectively. Microarray-based studies show a small overlap, with miR-10a, miR-20b, miR-9, miR-16 and miR-106 found repeatedly dysregulated. miR-34a, miR-125 and miR-375 were also found dysregulated in cervical exfoliated cells in relation to cancer progression. CONCLUSIONS The pivotal role of miRNAs in ICC progression and initial development is becoming more and more relevant. Available studies are essentially based on convenience material, entailing possible selection bias, and frequently of small size: all these points still represent a limitation to a wide comprehension of miRNAs relevant for ICC. The targeted approach instead of a genome-wide investigation still precludes the identification of all the relevant miRNAs in the process. The implementation of deep sequencing on large scale population-based studies will help to discover and validate the relation between altered miRNA expression and CC progression for the identification of biomarkers. Optimally, once explored on a miRNome scale, small specific miRNA signatures maybe used in the context of screening.
Collapse
Affiliation(s)
- Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy.,Department of Medical Sciences, University of Turin, Via Santena 19, 10126, Turin, Italy
| | - Daniela De Maria
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy
| | - Antonio Francavilla
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy
| | - Cornelia Di Gaetano
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy.,Department of Medical Sciences, University of Turin, Via Santena 19, 10126, Turin, Italy
| | - Guglielmo Ronco
- Center for Cancer Epidemiology and Prevention, AO City of Health and Science, Via Cavour, 31 10123, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
10
|
Laengsri V, Kerdpin U, Plabplueng C, Treeratanapiboon L, Nuchnoi P. Cervical Cancer Markers: Epigenetics and microRNAs. Lab Med 2018; 49:97-111. [DOI: 10.1093/labmed/lmx080] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Vishuda Laengsri
- Center for Research & Innovation, Mahidol University, Bangkok, Thailand
- Department of Clinical Microscopy, Mahidol University, Bangkok, Thailand
| | - Usanee Kerdpin
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Chotiros Plabplueng
- Center for Research & Innovation, Mahidol University, Bangkok, Thailand
- Department of Clinical Microscopy, Mahidol University, Bangkok, Thailand
| | - Lertyot Treeratanapiboon
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Pornlada Nuchnoi
- Center for Research & Innovation, Mahidol University, Bangkok, Thailand
- Department of Clinical Microscopy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Xie H, Norman I, Hjerpe A, Vladic T, Larsson C, Lui WO, Östensson E, Andersson S. Evaluation of microRNA-205 expression as a potential triage marker for patients with low-grade squamous intraepithelial lesions. Oncol Lett 2017; 13:3586-3598. [PMID: 28529583 PMCID: PMC5431461 DOI: 10.3892/ol.2017.5909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
High-risk human papillomavirus (HPV) testing is a recommended triage approach for females with atypical squamous cells of undetermined significance (ASCUS), but due to its poor specificity this approach is not recommended for patients with low-grade squamous intraepithelial lesions (LSIL). The objective of the current study was to determine microRNA (miR)-205 expression levels in liquid-based cytology (LBC) samples, and evaluate their ability to predict cervical intraepithelial neoplasia grade 2/3 or worse (CIN2/3+) in females with minor cytological abnormalities. LBC samples were obtained from patients attending the Swedish Cervical Cancer Screening Program. The Mann-Whitney U test, one-way analysis of variance, Kruskal-Wallis test, Spearman rank order correlation analysis, and Pearson's χ2 test were used to assess the results. Accuracy analyses indicated that high miR-205 expression had a significantly higher specificity to high-risk HPV testing, and a sensitivity similar to that of high-risk HPV testing to predict CIN2+ and CIN3+ in women with LSIL, but not those with high-grade squamous intraepithelial lesions. Although further research is required for females with LSIL, miR-205 expression in LBC samples may be a novel triage marker for, or a beneficial supplement to high-risk-HPV testing in these patients.
Collapse
Affiliation(s)
- Hong Xie
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China.,Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Ingrid Norman
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Anders Hjerpe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Tomislav Vladic
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Ellinor Östensson
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sonia Andersson
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| |
Collapse
|