1
|
Nataren N, Yamada M, Prow T. Molecular Skin Cancer Diagnosis: Promise and Limitations. J Mol Diagn 2023; 25:17-35. [PMID: 36243291 DOI: 10.1016/j.jmoldx.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Skin cancer is a significant and increasing global health burden. Although the current diagnostic workflow is robust and able to provide clinically actionable results, it is subject to notable limitations. The training and expertise required for accurate diagnoses using conventional skin cancer diagnostics are significant, and patient access to this workflow can be limited by geographic location or unforeseen events, such as coronavirus disease 2019 (COVID-19). Molecular biomarkers have transformed diagnostics and treatment delivery in oncology. With rapid advancements in molecular biology techniques, understanding of the underlying molecular mechanism of cancer pathologies has deepened, yielding biomarkers that can be used to monitor the course of malignant diseases. Herein, commercially available, clinically validated, and emerging skin cancer molecular biomarkers are reviewed. The qualities of an ideal molecular biomarker are defined. The potential benefits and limitations of applying molecular biomarker testing over the course of skin cancer from susceptibility to treatment are explored, with a view to outlining a future model of molecular biomarker skin cancer diagnostics.
Collapse
Affiliation(s)
- Nathalie Nataren
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Miko Yamada
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Tarl Prow
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia; Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom.
| |
Collapse
|
2
|
Kaneko A, Kanemaru H, Kajihara I, Mijiddorj T, Miyauchi H, Kuriyama H, Kimura T, Sawamura S, Makino K, Miyashita A, Aoi J, Makino T, Masuguchi S, Fukushima S, Ihn H. Liquid biopsy-based analysis by ddPCR and CAPP-Seq in melanoma patients. J Dermatol Sci 2021; 102:158-166. [PMID: 34049769 DOI: 10.1016/j.jdermsci.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The development of BRAF/MEK inhibitors in patients with metastatic melanoma harboring BRAF mutations has garnered attention for liquid biopsy to detect BRAF mutations in cell-free DNA (cfDNA) using droplet digital PCR (ddPCR) or next-generation sequencing methods. OBJECTIVE To investigate gene mutations in tumor DNA and cfDNA collected from 43 melanoma patients and evaluate their potential as biomarkers. METHODS ddPCR and CAncer Personalized Profiling by deep Sequencing (CAPP-Seq) techniques were performed to detect gene mutations in plasma cfDNA obtained from patients with metastatic melanoma. RESULTS Gene variants, including BRAF, NRAS, TP53, GNAS, and MET, were detectable in the plasma cfDNA, and the results were partially consistent with the results of those identified in the tissues. Among the variants examined, copy numbers of MET mutations were consistent with the disease status in two melanoma patients. CONCLUSION Liquid biopsy using CAPP-Seq and ddPCR has the potential to detect tumor presence and mutations, especially when tissue biopsies are unavailable. MET mutations in cfDNA may be a potential biomarker in patients with metastatic melanoma.
Collapse
Affiliation(s)
- Akira Kaneko
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisashi Kanemaru
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tselmeg Mijiddorj
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitomi Miyauchi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruka Kuriyama
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshihiro Kimura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Soichiro Sawamura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunari Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Azusa Miyashita
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Aoi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takamitsu Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinichi Masuguchi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Vanni I, Casula M, Pastorino L, Manca A, Dalmasso B, Andreotti V, Pisano M, Colombino M, Pfeffer U, Tanda ET, Rozzo C, Paliogiannis P, Cossu A, Ghiorzo P, Palmieri G. Quality assessment of a clinical next-generation sequencing melanoma panel within the Italian Melanoma Intergroup (IMI). Diagn Pathol 2020; 15:143. [PMID: 33317587 PMCID: PMC7737361 DOI: 10.1186/s13000-020-01052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identification of somatic mutations in key oncogenes in melanoma is important to lead the effective and efficient use of personalized anticancer treatment. Conventional methods focus on few genes per run and, therefore, are unable to screen for multiple genes simultaneously. The use of Next-Generation Sequencing (NGS) technologies enables sequencing of multiple cancer-driving genes in a single assay, with reduced costs and DNA quantity needed and increased mutation detection sensitivity. METHODS We designed a customized IMI somatic gene panel for targeted sequencing of actionable melanoma mutations; this panel was tested on three different NGS platforms using 11 metastatic melanoma tissue samples in blinded manner between two EMQN quality certificated laboratory. RESULTS The detection limit of our assay was set-up to a Variant Allele Frequency (VAF) of 10% with a coverage of at least 200x. All somatic variants detected by all NGS platforms with a VAF ≥ 10%, were also validated by an independent method. The IMI panel achieved a very good concordance among the three NGS platforms. CONCLUSION This study demonstrated that, using the main sequencing platforms currently available in the diagnostic setting, the IMI panel can be adopted among different centers providing comparable results.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R Benzi, 10, 16132, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Milena Casula
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R Benzi, 10, 16132, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Antonella Manca
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R Benzi, 10, 16132, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R Benzi, 10, 16132, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Marina Pisano
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Maria Colombino
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Ulrich Pfeffer
- Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Carla Rozzo
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Antonio Cossu
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, L.go R Benzi, 10, 16132, Genoa, Italy.
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| |
Collapse
|
4
|
Vanni I, Tanda ET, Spagnolo F, Andreotti V, Bruno W, Ghiorzo P. The Current State of Molecular Testing in the BRAF-Mutated Melanoma Landscape. Front Mol Biosci 2020; 7:113. [PMID: 32695793 PMCID: PMC7338720 DOI: 10.3389/fmolb.2020.00113] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 01/19/2023] Open
Abstract
The incidence of melanoma, among the most lethal cancers, is widespread and increasing. Metastatic melanoma has a poor prognosis, representing about 90% of skin cancer mortality. The increased knowledge of tumor biology and the greater understanding of the immune system role in the anti-tumor response has allowed us to develop a more rational approach to systemic therapies. The discovery of activating BRAF mutations in half of all melanomas has led to the development of molecularly targeted therapy with BRAF and MEK inhibitors, which dramatically improved outcomes of patients with stage IV BRAF-mutant melanoma. More recently, the results of clinical phase III studies conducted in the adjuvant setting led to the combined administration of BRAF and MEK inhibitors also in patients with resected high-risk melanoma (stage III). Therefore, BRAF mutation testing has become a priority to determine the oncologist's choice and course of therapy. In this review, we will report the molecular biology-based strategies used for BRAF mutation detection with the main advantages and disadvantages of the most commonly used diagnostic strategies. The timing of such molecular assessment in patients with cutaneous melanoma will be discussed, and we will also examine considerations and approaches for accurate and effective BRAF testing.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | | | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| |
Collapse
|
5
|
Harlé A, Franczak C. Authors’ Reply to Uguen: “Comparison of Five Different Assays for the Detection of BRAF Mutations in Formalin-Fixed Paraffin Embedded Tissues of Patients with Metastatic Melanoma”. Mol Diagn Ther 2017; 21:695-696. [DOI: 10.1007/s40291-017-0301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Comment on: "Comparison of Five Different Assays for the Detection of BRAF Mutations in Formalin-Fixed Paraffin Embedded Tissues of Patients with Metastatic Melanoma". Mol Diagn Ther 2017; 21:693-694. [PMID: 28929431 DOI: 10.1007/s40291-017-0300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Melis C, Rogiers A, Bechter O, van den Oord JJ. Molecular genetic and immunotherapeutic targets in metastatic melanoma. Virchows Arch 2017; 471:281-293. [DOI: 10.1007/s00428-017-2113-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 01/08/2023]
|