1
|
Jiang Z, Gu Z, Yu X, Cheng T, Liu B. Research progress on the role of bypass activation mechanisms in resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Front Oncol 2024; 14:1447678. [PMID: 39582541 PMCID: PMC11581962 DOI: 10.3389/fonc.2024.1447678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 11/26/2024] Open
Abstract
The clinical application of small molecule tyrosine kinase inhibitors (TKIs) has significantly improved the quality of life and prognosis of patients with non-small cell lung cancer (NSCLC) carrying driver genes. However, resistance to TKI treatment is inevitable. Bypass signal activation is one of the important reasons for TKI resistance. Although TKI drugs inhibit downstream signaling pathways of driver genes, key signaling pathways within tumor cells can still be persistently activated through bypass routes such as MET gene amplification, EGFR gene amplification, and AXL activation. This continuous activation maintains tumor cell growth and proliferation, leading to TKI resistance. The fundamental strategy to treat TKI resistance mediated by bypass activation involves simultaneously inhibiting the activated bypass signals and the original driver gene signaling pathways. Some clinical trials based on this combined treatment approach have yielded promising preliminary results, offering more treatment options for NSCLC patients with TKI resistance. Additionally, early identification of resistance mechanisms through liquid biopsy, personalized targeted therapy against these mechanisms, and preemptive targeting of drug-tolerant persistent cells may provide NSCLC patients with more sustained and effective treatment.
Collapse
Affiliation(s)
- Ziyang Jiang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihan Gu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaomin Yu
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Chengdu, China
- Institute of Disaster Medicine, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, West China Hospital, Chengdu, China
| | - Tao Cheng
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bofu Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Sebro R. Advancing Diagnostics and Patient Care: The Role of Biomarkers in Radiology. Semin Musculoskelet Radiol 2024; 28:3-13. [PMID: 38330966 DOI: 10.1055/s-0043-1776426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The integration of biomarkers into medical practice has revolutionized the field of radiology, allowing for enhanced diagnostic accuracy, personalized treatment strategies, and improved patient care outcomes. This review offers radiologists a comprehensive understanding of the diverse applications of biomarkers in medicine. By elucidating the fundamental concepts, challenges, and recent advancements in biomarker utilization, it will serve as a bridge between the disciplines of radiology and epidemiology. Through an exploration of various biomarker types, such as imaging biomarkers, molecular biomarkers, and genetic markers, I outline their roles in disease detection, prognosis prediction, and therapeutic monitoring. I also discuss the significance of robust study designs, blinding, power and sample size calculations, performance metrics, and statistical methodologies in biomarker research. By fostering collaboration between radiologists, statisticians, and epidemiologists, I hope to accelerate the translation of biomarker discoveries into clinical practice, ultimately leading to improved patient care.
Collapse
Affiliation(s)
- Ronnie Sebro
- Department of Radiology, Center for Augmented Intelligence, Mayo Clinic, Jacksonville, Florida
- Department of Biostatistics, Center for Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
3
|
Saha S, Araf Y, Promon SK. Circulating tumor DNA in cancer diagnosis, monitoring, and prognosis. J Egypt Natl Canc Inst 2022; 34:8. [PMID: 35187602 DOI: 10.1186/s43046-022-00109-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/29/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has become one of the crucial components for cancer detection with the increase of precision medicine practice. ctDNA has great potential as a blood-based biomarker for the detection and treatment of cancer in its early stages. The purpose of this article was to discuss ctDNA and how it can be utilized to detect cancer. The benefits and drawbacks of this cancer detection technology, as well as the field's future possibilities in various cancer management scenarios, are discussed. MAIN TEXT: ctDNA has clinical applications in disease diagnosis and monitoring. It can be used to identify mutations of interest and genetic heterogeneity. Another use of ctDNA is to monitor the effects of therapy by detecting mutation-driven resistance. Different technologies are being used for the detection of ctDNA. Next-generation sequencing, digital PCR, real-time PCR, and mass spectrometry are used. Using dPCR makes it possible to partition and analyze individual target sequences from a complex mixture. Mass-spectrometry technology enables accurate detection and quantification of ctDNA mutations at low frequency. Surface-enhanced Raman spectroscopy (SERS) and UltraSEEK are two systems based on this technology. There is no unified standard for detecting ctDNA as it exists in a low concentration in blood. As there is no defined approach, false positives occur in several methods due to inadequate sensitivities. Techniques used in ctDNA are costly and there is a limitation in clinical settings. SHORT CONCLUSION A detailed investigation is urgently needed to increase the test's accuracy and sensitivity. To find a standard marker for all forms of cancer DNA, more study is needed. Low concentrations of ctDNA in a sample require improved technology to provide the precision that low concentrations of ctDNA in a sample afford.
Collapse
Affiliation(s)
- Sudeepto Saha
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Salman Khan Promon
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh.
| |
Collapse
|
4
|
Arrieta O, Hernandez-Martinez JM, Montes-Servín E, Heredia D, Cardona AF, Molina-Romero C, Lara-Mejía L, Diaz-Garcia D, Bahena-Gonzalez A, Mendoza-Oliva DL. Impact of detecting plasma EGFR mutations with ultrasensitive liquid biopsy in outcomes of NSCLC patients treated with first- or second-generation EGFR-TKIs. Cancer Biomark 2021; 32:123-135. [PMID: 34057135 DOI: 10.3233/cbm-203164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Few trials have evaluated the utility of liquid biopsies to detect epidermal growth factor receptor mutations (EGFRm) at the time of response evaluation and its association with the clinical characteristics and outcomes of non-small-cell lung cancer (NSCLC) patients. OBJECTIVE This study aimed to evaluate, in a real-world clinical setting, the prevalence of plasma EGFRm and its association with the clinical characteristics, response and survival outcomes of NSCLC patients under treatment with EGFR-tyrosine kinase inhibitors (EGFR-TKIs). METHODS This observational study enrolled advanced or metastatic NSCLC patients, with confirmed tumor EGFRm, receiving treatment with first- or second-generation EGFR-TKIs. Blood samples for the detection of plasma EGFRm were collected at the time of response evaluation and processed using the Target Selector™ assay. The main outcomes were the detection rate of plasma EGFRm, median Progression-Free Survival (PFS) and Overall Survival (OS) according to plasma EGFR mutational status. RESULTS Of 84 patients, 50 (59.5%) had an EGFRm detected in plasma. After a median follow-up of 21.1 months, 63 patients (75%) had disease progression. The detection rate of plasma EGFRm was significantly higher in patients with disease progression than in patients with partial response or stable disease (68.3% versus 33.3%; P< 0.01). PFS and OS were significantly longer in patients without plasma EGFRm than among patients with plasma EGFRm (14.3 months [95% CI, 9.25-19.39] vs 11.0 months [95% CI, 8.61-13.46]; P= 0.034) and (67.8 months [95% CI, 39.80-95.94] vs 32.0 months [95% CI, 17.12-46.93]; P= 0.006), respectively. A positive finding in LB was associated with the presence of ⩾ 3 more metastatic sites (P= 0.028), elevated serum carcinoembryonic (CEA) at disease progression (P= 0.015), and an increase in CEA with respect to baseline levels (P= 0.038). CONCLUSIONS In NSCLC patients receiving EGFR-TKIs, the detection of plasma EGFRm at the time of tumor response evaluation is associated with poor clinical outcomes.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit. Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Juan-Manuel Hernandez-Martinez
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico.,CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Edgar Montes-Servín
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - David Heredia
- Thoracic Oncology Unit. Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Andrés F Cardona
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Molecular Oncology and Biology Systems Group (G-FOX), Universidad El Bosque, Bogotá, Colombia
| | - Camilo Molina-Romero
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Luis Lara-Mejía
- Thoracic Oncology Unit. Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Diego Diaz-Garcia
- Thoracic Oncology Unit. Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | - Dolores L Mendoza-Oliva
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
5
|
Schenk EL, Patil T, Pacheco J, Bunn PA. 2020 Innovation-Based Optimism for Lung Cancer Outcomes. Oncologist 2021; 26:e454-e472. [PMID: 33179378 PMCID: PMC7930417 DOI: 10.1002/onco.13590] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer death in both males and females in the U.S. and worldwide. Owing to advances in prevention, screening/early detection, and therapy, lung cancer mortality rates are decreasing and survival rates are increasing. These innovations are based on scientific discoveries in imaging, diagnostics, genomics, molecular therapy, and immunotherapy. Outcomes have improved in all histologies and stages. This review provides information on the clinical implications of these innovations that are practical for the practicing physicians, especially oncologists of all specialities who diagnose and treat patients with lung cancer. IMPLICATIONS FOR PRACTICE: Lung cancer survival rates have improved because of new prevention, screening, and therapy methods. This work provides a review of current standards for each of these areas, including targeted and immunotherapies. Treatment recommendations are provided for all stages of lung cancer.
Collapse
Affiliation(s)
- Erin L. Schenk
- Division of Medical Oncology, University of Colorado Cancer CenterAuroraColoradoUSA
| | - Tejas Patil
- Division of Medical Oncology, University of Colorado Cancer CenterAuroraColoradoUSA
| | - Jose Pacheco
- Division of Medical Oncology, University of Colorado Cancer CenterAuroraColoradoUSA
| | - Paul A. Bunn
- Division of Medical Oncology, University of Colorado Cancer CenterAuroraColoradoUSA
| |
Collapse
|
6
|
Prouteau A, Denis JA, De Fornel P, Cadieu E, Derrien T, Kergal C, Botherel N, Ulvé R, Rault M, Bouzidi A, François R, Dorso L, Lespagnol A, Devauchelle P, Abadie J, André C, Hédan B. Circulating tumor DNA is detectable in canine histiocytic sarcoma, oral malignant melanoma, and multicentric lymphoma. Sci Rep 2021; 11:877. [PMID: 33441840 PMCID: PMC7806858 DOI: 10.1038/s41598-020-80332-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor DNA (ctDNA) has become an attractive biomarker in human oncology, and its use may be informative in canine cancer. Thus, we used droplet digital PCR or PCR for antigen receptor rearrangement, to explore tumor-specific point mutations, copy number alterations, and chromosomal rearrangements in the plasma of cancer-affected dogs. We detected ctDNA in 21/23 (91.3%) of histiocytic sarcoma (HS), 2/8 (25%) of oral melanoma, and 12/13 (92.3%) of lymphoma cases. The utility of ctDNA in diagnosing HS was explored in 133 dogs, including 49 with HS, and the screening of recurrent PTPN11 mutations in plasma had a specificity of 98.8% and a sensitivity between 42.8 and 77% according to the clinical presentation of HS. Sensitivity was greater in visceral forms and especially related to pulmonary location. Follow-up of four dogs by targeting lymphoma-specific antigen receptor rearrangement in plasma showed that minimal residual disease detection was concordant with clinical evaluation and treatment response. Thus, our study shows that ctDNA is detectable in the plasma of cancer-affected dogs and is a promising biomarker for diagnosis and clinical follow-up. ctDNA detection appears to be useful in comparative oncology research due to growing interest in the study of natural canine tumors and exploration of new therapies.
Collapse
Affiliation(s)
- Anaïs Prouteau
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Jérôme Alexandre Denis
- Sorbonne University, Paris, France.,INSERM UMR_S 938, Endocrinology and Oncology Biochemistry Department, APHP Pitié-Salpêtrière Hospital, Paris, France
| | | | - Edouard Cadieu
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Camille Kergal
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Nadine Botherel
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Ronan Ulvé
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Mélanie Rault
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | | | | | - Laetitia Dorso
- Department of Biology, Pathology and Food Sciences, Oniris, Laboniris, Nantes, France
| | - Alexandra Lespagnol
- Laboratory of Somatic Genetic of Cancers, Hospital of Rennes, Rennes, France
| | | | - Jérôme Abadie
- Department of Biology, Pathology and Food Sciences, Oniris, Laboniris, Nantes, France
| | - Catherine André
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Benoît Hédan
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France.
| |
Collapse
|
7
|
Zhou H, Xiang Q, Hu C, Zhang J, Zhang Q, Zhang R. Identification of MMP1 as a potential gene conferring erlotinib resistance in non-small cell lung cancer based on bioinformatics analyses. Hereditas 2020; 157:32. [PMID: 32703314 PMCID: PMC7379796 DOI: 10.1186/s41065-020-00145-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the major type of lung cancer with high morbidity and poor prognosis. Erlotinib, an inhibitor of epidermal growth factor receptor (EGFR), has been clinically applied for NSCLC treatment. Nevertheless, the erlotinib acquired resistance of NSCLC occurs inevitably in recent years. METHODS Through analyzing two microarray datasets, erlotinib resistant NSCLC cells microarray (GSE80344) and NSCLC tissue microarray (GSE19188), the differentially expressed genes (DEGs) were screened via R language. DEGs were then functionally annotated by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, which up-regulated more than 2-folds in both datasets were further functionally analyzed by Oncomine, GeneMANIA, R2, Coremine, and FunRich. RESULTS We found that matrix metalloproteinase 1 (MMP1) may confer the erlotinib therapeutic resistance in NSCLC. MMP1 highly expressed in erlotinib-resistant cells and NSCLC tissues, and it associated with poor overall survival. In addition, MMP1 may be associated with COPS5 and be involve in an increasing transcription factors HOXA9 and PBX1 in erlotinib resistance. CONCLUSIONS Generally, these results demonstrated that MMP1 may play a crucial role in erlotinib resistance in NSCLC, and MMP1 could be a prognostic biomarker for erlotinib treatment.
Collapse
Affiliation(s)
- Huyue Zhou
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China
| | - Qiumei Xiang
- Maternity service center of Beijing Fengtai District Maternal and Child health care hospital, Beijing, 100067, China
| | - Changpeng Hu
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China
| | - Jing Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China
| | - Qian Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China.
| | - Rong Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China.
| |
Collapse
|
8
|
Kosovec JE, Zaidi AH, Pounardjian TS, Jobe BA. The Potential Clinical Utility of Circulating Tumor DNA in Esophageal Adenocarcinoma: From Early Detection to Therapy. Front Oncol 2018; 8:610. [PMID: 30619750 PMCID: PMC6297385 DOI: 10.3389/fonc.2018.00610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is a lethal cancer requiring improved screening strategies and treatment options due to poor detection methods, aggressive progression, and therapeutic resistance. Emerging circulating tumor DNA (ctDNA) technologies may offer a unique non-invasive strategy to better characterize the highly heterogeneous cancer and more clearly establish the genetic modulations leading to disease progression. The presented review describes the potential advantages of ctDNA methodologies as compared to current clinical strategies to improve clinical detection, enhance disease surveillance, evaluate prognosis, and personalize treatment. Specifically, we describe the ctDNA-targetable genetic markers of prognostic significance to stratify patients into risk of progression from benign to malignant disease and potentially offer cost-effective screening of established cancer. We also describe the application of ctDNA to more effectively characterize the heterogeneity and particular mutagenic resistance mechanisms in real-time to improve prognosis and therapeutic monitoring strategies. Lastly, we discuss the inconsistent clinical responses to currently approved therapies for EAC and the role of ctDNA to explore the dynamic regulation of novel targeted and immunotherapies to personalize therapy and improve patient outcomes. Although there are clear limitations of ctDNA technologies for immediate clinical deployment, this review presents the prospective role of such applications to potentially overcome many of the notable hurdles to treating EAC patients. A deeper understanding of complex EAC tumor biology may result in the progress toward improved clinical outcomes.
Collapse
Affiliation(s)
- Juliann E Kosovec
- Esophageal and Lung Institute, Allegheny Health Network, Pittsburgh, PA, United States
| | - Ali H Zaidi
- Esophageal and Lung Institute, Allegheny Health Network, Pittsburgh, PA, United States
| | - Tamar S Pounardjian
- Esophageal and Lung Institute, Allegheny Health Network, Pittsburgh, PA, United States
| | - Blair A Jobe
- Esophageal and Lung Institute, Allegheny Health Network, Pittsburgh, PA, United States
| |
Collapse
|
9
|
You S, Gao L. Identification of NMU as a potential gene conferring alectinib resistance in non-small cell lung cancer based on bioinformatics analyses. Gene 2018; 678:137-142. [PMID: 30096454 DOI: 10.1016/j.gene.2018.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/17/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, and adjuvant targeted therapy has shown great benefits for the NSCLC patients with specific genomic mutations. Alectinib, a selective anaplastic lymphoma kinase (ALK) inhibitor, has been clinically used for the NSCLC patients with ALK-rearrangement, however, irreversible therapeutic resistance for the patients receiving alectinib treatment frequently occurs. Here we show that neuromedin U (NMU) may confer the alectinib resistance in NSCLC via multiple mechanisms based on the integrative bioinformatics analyses. Through employing the bioinformatics analyses of three microarray datasets, NMU, overexpressed in both NSCLC tissues and alectinib-resistant NSCLC cells, was initially identified as potential candidate for causing alectinib resistance in NSCLC. The resistance function of NMU in NSCLC was validated by performing protein/gene interactions and biological process annotation analyses, and further validated by analyzing the transcription factors targeting NMU mRNA. Collectively, these results indicated that NMU may confer alectinib resistance in NSCLC.
Collapse
Affiliation(s)
- Shuangjie You
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lei Gao
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
10
|
Khatami F, Tavangar SM. Circulating tumor DNA (ctDNA) in the era of personalized cancer therapy. J Diabetes Metab Disord 2018; 17:19-30. [PMID: 30288382 PMCID: PMC6154523 DOI: 10.1007/s40200-018-0334-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
The heterogeneity of tumor is considered as a major difficulty to victorious personalized cancer medicine. There is an extremeneed of consistent response evaluation for in vivo tumor heterogeneity anditscoupledconflict mechanisms. In this occasion researchers will be able to keep pace withpredictive, preventive, personalized, and Participatory (P4) medicine for cancer managements. In fact tumor heterogeneity is a central part of cancer evolution,soin order to progress in understanding of the dynamics within a tumor some diagnostic apparatus should be improved. Latest molecular techniques like Next generation Sequencing (NGS) and ultra-deep sequencing could disclose some clones within a liquid tumor biopsy which mainly responsible of treatment resistance. Circulating tumor DNA (ctDNA) as a main component of liquid biopsy is agifted biomarker for cancer mutation tracking as well as profiling. Personalized medicine facilitate learning regarding to genetic pools of tumor and their possible respond to treatment which could be much easier by using of ctDNA.With this information, cliniciansarelooking forward to find the best strategies for prevention, screening, and treatment in the way of precision medicine. Currently, numerous clinical efficacy of such informative improved treatment are in hand. Here we represent the review of plasma-derived ctDNA studies use in personalized cancer managements.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Departments of Pathology, Doctor Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Affiliation(s)
- David S Schrump
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Md.
| |
Collapse
|